
If A is a square matrix of order 5 and $9{{A}^{-1}}=4{{A}^{T}}$ . Then \[\left| adj(adj\left( adj\text{ }A \right) \right|\] contains how many digits.
Here ${{A}^{-1}},{{A}^{T}}\text{ and }adj(A)$ means Inverse of A, Transpose of A and adjugate matrix of A respectively. ($\log 3=0.477,\log 2=0.303$)
$\begin{align}
& \text{a) 56 digits} \\
& \text{b) 60 digits} \\
& \text{c) 58 digits} \\
& \text{d) 53 digits} \\
\end{align}$
Answer
592.2k+ views
Hint: First we will try to solve the given equation by taking the determinant. We can use the properties $|{{A}^{T}}|=|A|$ and $|{{A}^{-1}}|=\dfrac{1}{|A|}$ to find the value of determinant of A.
Complete step by step answer:
Then we know the relation between determinant of adjugate A and determinant of A which is $|adj(A)|=|A{{|}^{n-1}}$ using this relation 3 times successively we get \[\left| adj(adj\left( adj\text{ }A \right) \right|\] and hence we can find the number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\] is greatest integer of \[\left| adj(adj\left( adj\text{ }A \right) \right|\]+ 1
Now we are given with the equation $9{{A}^{-1}}=4{{A}^{T}}$ and the order of Matrix A is 5.
Taking determinant on both sides we get $|9{{A}^{-1}}|=|4{{A}^{T}}|$
Now we will use the property of determinant which says if A is a matrix of order n then
$|pA|={{p}^{n}}|A|$. Hence we get
${{9}^{5}}|{{A}^{-1}}|={{4}^{5}}|{{A}^{T}}|$.
Now we also know that $|{{A}^{T}}|=|A|$ and $|{{A}^{-1}}|=\dfrac{1}{|A|}$ .
Using this properties we get ${{9}^{5}}\dfrac{1}{|A|}={{4}^{5}}|A|$
Now we will rearrange the terms by taking ${{4}^{5}}$ to LHS and $\dfrac{1}{|A|}$ to RHS. So we get
$\begin{align}
& \dfrac{{{9}^{5}}}{{{4}^{5}}}=|A{{|}^{2}} \\
& \Rightarrow |A{{|}^{2}}={{\left( \dfrac{9}{4} \right)}^{5}} \\
& \Rightarrow |A|={{\left( \dfrac{9}{4} \right)}^{\dfrac{5}{2}}} \\
& \Rightarrow |A|={{\left( \dfrac{3}{2} \right)}^{5}} \\
\end{align}$
Now we have $|A|={{\left( \dfrac{3}{2} \right)}^{5}}.....................(1)$
Now we have a property of determinant which says $|adj(A)|=|A{{|}^{n-1}}$
Let us successively use this property
\[\begin{align}
& |adjA|=|A{{|}^{5-1}}=|A{{|}^{4}} \\
& \Rightarrow |adj(adjA)|={{(|A{{|}^{4}})}^{5-1}} \\
& \Rightarrow |adj[adj(adjA)]|={{({{(|A{{|}^{4}})}^{4}})}^{5-1}} \\
& \Rightarrow |adj[adj(adjA)]|={{({{(|A{{|}^{4}})}^{4}})}^{4}}=|A{{|}^{{{4}^{3}}}} \\
\end{align}\]
Now we substitute the value of |A| from equation (1) so we get
\[|adj[adj(adjA)]|={{\left( {{\left( \dfrac{3}{2} \right)}^{5}} \right)}^{{{4}^{3}}}}\]
Now we know that ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ using this property we get
\[\Rightarrow |adj[adj(adjA)]|={{\left( \dfrac{3}{2} \right)}^{5\times {{4}^{3}}}}={{\left( \dfrac{3}{2} \right)}^{320}}\]
Now number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\]
\[=\left[ \log {{\left( \dfrac{3}{2} \right)}^{320}} \right]+1\] Where [] is greatest integer function
\[=\left[ \log \dfrac{{{3}^{320}}}{{{2}^{320}}} \right]+1\]
Now we apply the property of log which is $\log \dfrac{a}{b}=\log a-\log b$
\[=\left[ \log {{3}^{320}}-\log {{2}^{320}} \right]+1\]
Now we also know that $\log {{a}^{b}}=b\log a$
\[=\left[ 320\log 3-320\log 2 \right]+1\]
We are given the values of log3 and log2, we will substitute those values in the equation to get
\[=\left[ 320(0.477)-320(0.303) \right]+1\]
Now 320 × 0.477 = 152.64 and 320 × 0.303 = 96.96.
\[\begin{align}
& =\left[ (152.64)-(96.96) \right]+1 \\
& =[55.6]+1 \\
& =55+1 \\
& =56 \\
\end{align}\]
Hence the number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\] is equal to 56
Note: The characteristic of the logarithm of a positive number is positive and it is one less than the number of digits in the number. Hence we use find number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\] by taking greatest integer of log of \[\left| adj(adj\left( adj\text{ }A \right) \right|\] and adding 1.
Complete step by step answer:
Then we know the relation between determinant of adjugate A and determinant of A which is $|adj(A)|=|A{{|}^{n-1}}$ using this relation 3 times successively we get \[\left| adj(adj\left( adj\text{ }A \right) \right|\] and hence we can find the number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\] is greatest integer of \[\left| adj(adj\left( adj\text{ }A \right) \right|\]+ 1
Now we are given with the equation $9{{A}^{-1}}=4{{A}^{T}}$ and the order of Matrix A is 5.
Taking determinant on both sides we get $|9{{A}^{-1}}|=|4{{A}^{T}}|$
Now we will use the property of determinant which says if A is a matrix of order n then
$|pA|={{p}^{n}}|A|$. Hence we get
${{9}^{5}}|{{A}^{-1}}|={{4}^{5}}|{{A}^{T}}|$.
Now we also know that $|{{A}^{T}}|=|A|$ and $|{{A}^{-1}}|=\dfrac{1}{|A|}$ .
Using this properties we get ${{9}^{5}}\dfrac{1}{|A|}={{4}^{5}}|A|$
Now we will rearrange the terms by taking ${{4}^{5}}$ to LHS and $\dfrac{1}{|A|}$ to RHS. So we get
$\begin{align}
& \dfrac{{{9}^{5}}}{{{4}^{5}}}=|A{{|}^{2}} \\
& \Rightarrow |A{{|}^{2}}={{\left( \dfrac{9}{4} \right)}^{5}} \\
& \Rightarrow |A|={{\left( \dfrac{9}{4} \right)}^{\dfrac{5}{2}}} \\
& \Rightarrow |A|={{\left( \dfrac{3}{2} \right)}^{5}} \\
\end{align}$
Now we have $|A|={{\left( \dfrac{3}{2} \right)}^{5}}.....................(1)$
Now we have a property of determinant which says $|adj(A)|=|A{{|}^{n-1}}$
Let us successively use this property
\[\begin{align}
& |adjA|=|A{{|}^{5-1}}=|A{{|}^{4}} \\
& \Rightarrow |adj(adjA)|={{(|A{{|}^{4}})}^{5-1}} \\
& \Rightarrow |adj[adj(adjA)]|={{({{(|A{{|}^{4}})}^{4}})}^{5-1}} \\
& \Rightarrow |adj[adj(adjA)]|={{({{(|A{{|}^{4}})}^{4}})}^{4}}=|A{{|}^{{{4}^{3}}}} \\
\end{align}\]
Now we substitute the value of |A| from equation (1) so we get
\[|adj[adj(adjA)]|={{\left( {{\left( \dfrac{3}{2} \right)}^{5}} \right)}^{{{4}^{3}}}}\]
Now we know that ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ using this property we get
\[\Rightarrow |adj[adj(adjA)]|={{\left( \dfrac{3}{2} \right)}^{5\times {{4}^{3}}}}={{\left( \dfrac{3}{2} \right)}^{320}}\]
Now number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\]
\[=\left[ \log {{\left( \dfrac{3}{2} \right)}^{320}} \right]+1\] Where [] is greatest integer function
\[=\left[ \log \dfrac{{{3}^{320}}}{{{2}^{320}}} \right]+1\]
Now we apply the property of log which is $\log \dfrac{a}{b}=\log a-\log b$
\[=\left[ \log {{3}^{320}}-\log {{2}^{320}} \right]+1\]
Now we also know that $\log {{a}^{b}}=b\log a$
\[=\left[ 320\log 3-320\log 2 \right]+1\]
We are given the values of log3 and log2, we will substitute those values in the equation to get
\[=\left[ 320(0.477)-320(0.303) \right]+1\]
Now 320 × 0.477 = 152.64 and 320 × 0.303 = 96.96.
\[\begin{align}
& =\left[ (152.64)-(96.96) \right]+1 \\
& =[55.6]+1 \\
& =55+1 \\
& =56 \\
\end{align}\]
Hence the number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\] is equal to 56
Note: The characteristic of the logarithm of a positive number is positive and it is one less than the number of digits in the number. Hence we use find number of digits in \[\left| adj(adj\left( adj\text{ }A \right) \right|\] by taking greatest integer of log of \[\left| adj(adj\left( adj\text{ }A \right) \right|\] and adding 1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

