
If ‘a’ is a real constant and A,B,C are the variable angles and \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a\] , then the least value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\] is
\[\begin{align}
& (A)6 \\
& (B)10 \\
& (C)12 \\
& (D)3 \\
\end{align}\]
Answer
581.7k+ views
Hint: We should know that that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]. Now we should compare \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C\] with \[{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]. Now we can get the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\].
Now by using the statement \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\], we can find the values of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\].
Complete step by step solution:
Before solving the problem, we should know that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\].
From the question, we given that \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a\]
Let us compare \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C\] with \[{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\], then we get
\[\begin{align}
& {{a}_{1}}=\sqrt{{{a}^{2}}+4}....(1) \\
& {{a}_{2}}=a.....(2) \\
& {{a}_{3}}=\sqrt{{{a}^{2}}+4}....(3) \\
& {{b}_{1}}=\tan A.....(4) \\
& {{b}_{2}}=\tan B.....(5) \\
& {{b}_{3}}=\tan C.....(6) \\
\end{align}\]
Let us assume
\[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a......(7)\]
From (1), (2), (3), (4), (5), (6) and (7)
Now we will apply the condition for the given equation.
\[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( {{\left( \sqrt{{{a}^{2}}-4} \right)}^{2}}+{{a}^{2}}+{{\left( \sqrt{{{a}^{2}}+4} \right)}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)......(8)\]
Now we will substitute equation (7) in equation (8).
\[\begin{align}
& \Rightarrow {{\left( 6a \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow 36{{a}^{2}}\ge (3{{a}^{2}})\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow \left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\le 12 \\
\end{align}\]
So, the least value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]is equal to 12.
Hence, option C is correct.
Note: Some students have a misconception that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\le \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]. If this misconception is followed, we will get the maximum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\] is equal to 12. But we want the minimum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]. The minimum cannot be obtained. So, to solve this problem students should have a clear view of the concept of inequalities.
Now by using the statement \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\], we can find the values of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\].
Complete step by step solution:
Before solving the problem, we should know that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\].
From the question, we given that \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a\]
Let us compare \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C\] with \[{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\], then we get
\[\begin{align}
& {{a}_{1}}=\sqrt{{{a}^{2}}+4}....(1) \\
& {{a}_{2}}=a.....(2) \\
& {{a}_{3}}=\sqrt{{{a}^{2}}+4}....(3) \\
& {{b}_{1}}=\tan A.....(4) \\
& {{b}_{2}}=\tan B.....(5) \\
& {{b}_{3}}=\tan C.....(6) \\
\end{align}\]
Let us assume
\[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a......(7)\]
From (1), (2), (3), (4), (5), (6) and (7)
Now we will apply the condition for the given equation.
\[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( {{\left( \sqrt{{{a}^{2}}-4} \right)}^{2}}+{{a}^{2}}+{{\left( \sqrt{{{a}^{2}}+4} \right)}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)......(8)\]
Now we will substitute equation (7) in equation (8).
\[\begin{align}
& \Rightarrow {{\left( 6a \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow 36{{a}^{2}}\ge (3{{a}^{2}})\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow \left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\le 12 \\
\end{align}\]
So, the least value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]is equal to 12.
Hence, option C is correct.
Note: Some students have a misconception that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\le \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]. If this misconception is followed, we will get the maximum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\] is equal to 12. But we want the minimum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]. The minimum cannot be obtained. So, to solve this problem students should have a clear view of the concept of inequalities.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

