
If ‘a’ is a real constant and A,B,C are the variable angles and \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a\] , then the least value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\] is
\[\begin{align}
& (A)6 \\
& (B)10 \\
& (C)12 \\
& (D)3 \\
\end{align}\]
Answer
596.7k+ views
Hint: We should know that that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]. Now we should compare \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C\] with \[{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]. Now we can get the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\].
Now by using the statement \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\], we can find the values of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\].
Complete step by step solution:
Before solving the problem, we should know that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\].
From the question, we given that \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a\]
Let us compare \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C\] with \[{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\], then we get
\[\begin{align}
& {{a}_{1}}=\sqrt{{{a}^{2}}+4}....(1) \\
& {{a}_{2}}=a.....(2) \\
& {{a}_{3}}=\sqrt{{{a}^{2}}+4}....(3) \\
& {{b}_{1}}=\tan A.....(4) \\
& {{b}_{2}}=\tan B.....(5) \\
& {{b}_{3}}=\tan C.....(6) \\
\end{align}\]
Let us assume
\[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a......(7)\]
From (1), (2), (3), (4), (5), (6) and (7)
Now we will apply the condition for the given equation.
\[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( {{\left( \sqrt{{{a}^{2}}-4} \right)}^{2}}+{{a}^{2}}+{{\left( \sqrt{{{a}^{2}}+4} \right)}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)......(8)\]
Now we will substitute equation (7) in equation (8).
\[\begin{align}
& \Rightarrow {{\left( 6a \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow 36{{a}^{2}}\ge (3{{a}^{2}})\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow \left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\le 12 \\
\end{align}\]
So, the least value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]is equal to 12.
Hence, option C is correct.
Note: Some students have a misconception that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\le \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]. If this misconception is followed, we will get the maximum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\] is equal to 12. But we want the minimum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]. The minimum cannot be obtained. So, to solve this problem students should have a clear view of the concept of inequalities.
Now by using the statement \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\], we can find the values of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\].
Complete step by step solution:
Before solving the problem, we should know that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\].
From the question, we given that \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a\]
Let us compare \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C\] with \[{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\], then we get
\[\begin{align}
& {{a}_{1}}=\sqrt{{{a}^{2}}+4}....(1) \\
& {{a}_{2}}=a.....(2) \\
& {{a}_{3}}=\sqrt{{{a}^{2}}+4}....(3) \\
& {{b}_{1}}=\tan A.....(4) \\
& {{b}_{2}}=\tan B.....(5) \\
& {{b}_{3}}=\tan C.....(6) \\
\end{align}\]
Let us assume
\[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C=6a......(7)\]
From (1), (2), (3), (4), (5), (6) and (7)
Now we will apply the condition for the given equation.
\[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\ge \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( {{\left( \sqrt{{{a}^{2}}-4} \right)}^{2}}+{{a}^{2}}+{{\left( \sqrt{{{a}^{2}}+4} \right)}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\]
\[\Rightarrow {{\left( \sqrt{{{a}^{2}}-4}\tan A+a\tan B+\sqrt{{{a}^{2}}+4}\tan C \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)......(8)\]
Now we will substitute equation (7) in equation (8).
\[\begin{align}
& \Rightarrow {{\left( 6a \right)}^{2}}\ge \left( 3{{a}^{2}} \right)\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow 36{{a}^{2}}\ge (3{{a}^{2}})\left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right) \\
& \Rightarrow \left( ta{{n}^{2}}A+ta{{n}^{2}}B+ta{{n}^{2}}C \right)\le 12 \\
\end{align}\]
So, the least value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]is equal to 12.
Hence, option C is correct.
Note: Some students have a misconception that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{b}_{1}},{{b}_{2}},{{b}_{3}}\] are numbers, integers, functions etc….. then \[{{({{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}})}^{2}}\le \left( a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \right)\left( b_{1}^{2}+b_{2}^{2}+b_{3}^{2} \right)\]. If this misconception is followed, we will get the maximum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\] is equal to 12. But we want the minimum value of \[{{\tan }^{2}}A+{{\tan }^{2}}B+{{\tan }^{2}}C\]. The minimum cannot be obtained. So, to solve this problem students should have a clear view of the concept of inequalities.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

