
If \[A\] is a matrix of order 3, then \[\det \left( {kA} \right)\] is
A.\[{k^3}\det \left( A \right)\]
B.\[{k^2}\det \left( A \right)\]
C.\[k\det \left( A \right)\]
D.\[\det \left( A \right)\]
Answer
549.3k+ views
Hint: Here we need to find the value of determinant when a matrix of the given order is multiplied by a constant term. We will first assume the matrix with variable elements and then we will find its determinant. We will multiply the given matrix by a constant term and then we will again find its determinant. From there, we will get our required answer.
Complete step-by-step answer:
Let the matrix \[A\] of order 3 be \[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]
\[ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]
Now, we will find the determinant of the matrix \[A\] using the rule.
\[\det \left( A \right) = a\left( {e \times i - f \times h} \right) - b\left( {d \times i - f \times g} \right) + c\left( {d \times h - e \times g} \right)\] ………… \[\left( 1 \right)\]
Now, we will multiply the given matrix i.e. matrix \[A\] by the constant \[k\] . We know that, when you multiply a matrix by any constant, then all of its elements get multiplied by that constant term.
Therefore,
On multiplying the matrix by a constant, we get
\[ \Rightarrow k \times A = k \times \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]
\[ \Rightarrow k \times A = \left[ {\begin{array}{*{20}{c}}{k \times a}&{k \times b}&{k \times c}\\{k \times d}&{k \times e}&{k \times f}\\{k \times g}&{k \times h}&{k \times i}\end{array}} \right]\]
Now, we will find the determinant of this matrix i.e. we will find \[\det \left( {kA} \right)\].
\[\begin{array}{l} \Rightarrow \det \left( {kA} \right) = K \times a\left( {k \times e \times k \times i - k \times f \times k \times h} \right) - k \times b\left( {k \times d \times k \times i - k \times f \times k \times g} \right)\\ + k \times c\left( {k \times d \times k \times h - k \times e \times k \times g} \right)\end{array}\]
Now, we will take common terms out of the bracket.
\[ \Rightarrow \det \left( {kA} \right) = {k^3} \times a\left( {e \times i - f \times h} \right) - {k^3} \times b\left( {d \times i - f \times g} \right) + {k^3} \times c\left( {d \times h - e \times g} \right)\]
On taking the term \[{k^3}\] common, we get
\[ \Rightarrow \det \left( {kA} \right) = {k^3} \times \left( {a\left( {e \times i - f \times h} \right) - b\left( {d \times i - f \times g} \right) + c\left( {d \times h - e \times g} \right)} \right)\]
We know from equation 1 that
\[\det \left( A \right) = a\left( {e \times i - f \times h} \right) - b\left( {d \times i - f \times g} \right) + c\left( {d \times h - e \times g} \right)\]
Now, we will substitute this value here.
\[ \Rightarrow \det \left( {kA} \right) = {k^3} \times \det \left( A \right)\]
Therefore, the value of \[\det \left( {kA} \right)\] is equal to \[{k^3}\det \left( A \right)\].
Hence, the correct option is option A.
Note: In order to solve this question, we need to keep in mind some basic properties of determinants. If all elements of a row (or column) of a determinant are multiplied by some constant number, then the value of the new determinant will be constant times the value of the given determinant. If we multiply a constant term \[k\] to a \[n \times n\] matrix \[A\] , then the value of the determinant will change by a factor \[{k^n}\] .
Complete step-by-step answer:
Let the matrix \[A\] of order 3 be \[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]
\[ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]
Now, we will find the determinant of the matrix \[A\] using the rule.
\[\det \left( A \right) = a\left( {e \times i - f \times h} \right) - b\left( {d \times i - f \times g} \right) + c\left( {d \times h - e \times g} \right)\] ………… \[\left( 1 \right)\]
Now, we will multiply the given matrix i.e. matrix \[A\] by the constant \[k\] . We know that, when you multiply a matrix by any constant, then all of its elements get multiplied by that constant term.
Therefore,
On multiplying the matrix by a constant, we get
\[ \Rightarrow k \times A = k \times \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]
\[ \Rightarrow k \times A = \left[ {\begin{array}{*{20}{c}}{k \times a}&{k \times b}&{k \times c}\\{k \times d}&{k \times e}&{k \times f}\\{k \times g}&{k \times h}&{k \times i}\end{array}} \right]\]
Now, we will find the determinant of this matrix i.e. we will find \[\det \left( {kA} \right)\].
\[\begin{array}{l} \Rightarrow \det \left( {kA} \right) = K \times a\left( {k \times e \times k \times i - k \times f \times k \times h} \right) - k \times b\left( {k \times d \times k \times i - k \times f \times k \times g} \right)\\ + k \times c\left( {k \times d \times k \times h - k \times e \times k \times g} \right)\end{array}\]
Now, we will take common terms out of the bracket.
\[ \Rightarrow \det \left( {kA} \right) = {k^3} \times a\left( {e \times i - f \times h} \right) - {k^3} \times b\left( {d \times i - f \times g} \right) + {k^3} \times c\left( {d \times h - e \times g} \right)\]
On taking the term \[{k^3}\] common, we get
\[ \Rightarrow \det \left( {kA} \right) = {k^3} \times \left( {a\left( {e \times i - f \times h} \right) - b\left( {d \times i - f \times g} \right) + c\left( {d \times h - e \times g} \right)} \right)\]
We know from equation 1 that
\[\det \left( A \right) = a\left( {e \times i - f \times h} \right) - b\left( {d \times i - f \times g} \right) + c\left( {d \times h - e \times g} \right)\]
Now, we will substitute this value here.
\[ \Rightarrow \det \left( {kA} \right) = {k^3} \times \det \left( A \right)\]
Therefore, the value of \[\det \left( {kA} \right)\] is equal to \[{k^3}\det \left( A \right)\].
Hence, the correct option is option A.
Note: In order to solve this question, we need to keep in mind some basic properties of determinants. If all elements of a row (or column) of a determinant are multiplied by some constant number, then the value of the new determinant will be constant times the value of the given determinant. If we multiply a constant term \[k\] to a \[n \times n\] matrix \[A\] , then the value of the determinant will change by a factor \[{k^n}\] .
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

