
If A is $3\times 4$ matrix and B is a matrix such that A’B and B’A are both defined, then order of B is
A. $4\times 4$
B. $3\times 3$
C. $3\times 4$
D. $4\times 3$
Answer
610.8k+ views
Hint: Let there be matrix $X$ and $Y$.
$\begin{align}
& X={{\left[ {{x}_{ij}} \right]}_{m\times n}},\text{ 1}\le \text{i}\le m,\text{ 1}\le \text{j}\le n \\
& Y={{\left[ {{y}_{ij}} \right]}_{p\times q}},\text{ 1}\le \text{i}\le \text{p, 1}\le \text{j}\le \text{q} \\
\end{align}$
Complete step-by-step answer:
Here, $m$ is the number of rows and $n$ is the number of columns in matrix $X$ respectively . Similarly, $p$ is the number of rows and $q$ is the number of columns in the matrix \[Y\]. So, two matrices $X$ and $Y$ can be multiplied as $XY$ if the number of columns of $X$ is equal to the number of rows of $Y$. That is $n=p$.
Mathematically,
Number of columns of$X$ $=$ Number of rows of $Y$
that is $n=p$
So, $XY=\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{1n}} \\
\vdots & \ddots & \vdots \\
{{x}_{m1}} & \cdots & {{x}_{mn}} \\
\end{matrix} \right)\times \left( \begin{matrix}
{{y}_{11}} & \ldots & {{y}_{1q}} \\
\vdots & \ddots & \vdots \\
{{y}_{n1}} & \cdots & {{y}_{nq}} \\
\end{matrix} \right)$
So, here, $n=p$
$X'$ of a matrix is the transpose of matrix$X$
So, if $X=\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{1n}} \\
\vdots & \ddots & \vdots \\
{{x}_{m1}} & \cdots & {{x}_{mn}} \\
\end{matrix} \right)$
Then, $X'={{X}^{T}}=X={{\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{1n}} \\
\vdots & \ddots & \vdots \\
{{x}_{m1}} & \cdots & {{x}_{mn}} \\
\end{matrix} \right)}^{T}}_{m\times n}={{\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{m1}} \\
\vdots & \ddots & \vdots \\
{{x}_{1n}} & \cdots & {{x}_{nm}} \\
\end{matrix} \right)}_{n\times m}}$
So, clearly we can see the order reverses after the transpose of a matrix.
So, for $A={{\left[ {{a}_{ij}} \right]}_{3\times 4}},\text{ 1}\le \text{i}\le \text{3,}\ \text{1}\le \text{j}\le \text{4}$
$A'={{\left[ {{a}_{ji}} \right]}_{4\times 3}},\text{ 1}\le \text{j}\le \text{4,}\ \text{1}\le \text{i}\le \text{3}$
So, order of$A'$is$4\times 3$ and for$B={{\left[ {{b}_{ij}} \right]}_{m\times n}},\ \ \text{1}\le \text{i}\le \text{m, 1}\le \text{j}\le \text{n}$
$B'={{\left[ {{b}_{ji}} \right]}_{n\times m}},\ \text{1}\le \text{j}\le \text{n, 1}\le \text{i}\le \text{m}$
Now, for $A'B$, number of columns of $A'$$=$ number of rows of$B$$\Rightarrow 3=m$
Also, for $B'A$ to be defined number of columns of $B'=$number of rows of$A$$\Rightarrow m=3$
For both cases to be defined, $m$ equal number of rows of $B$ should be $3$ and $n$ can be any number. So, it can be $3$ and $4$ both. So, following that the order of $B$ could be $3\times 3$ or $3\times 4$ respectively.
So, the correct option is option B and option C.
Note: $A'$ is the transpose of matrix $A$. One may not consider it inverse of $A$ unless specified so. Also, if $A'B$ exists then $B'A$ also exists automatically because,
$(A'B)'=B'\left( A' \right)'=B'A$ ( General property of matrices)
So, in simple terms if matrix $A$ exists then its transpose also exists.
$\begin{align}
& X={{\left[ {{x}_{ij}} \right]}_{m\times n}},\text{ 1}\le \text{i}\le m,\text{ 1}\le \text{j}\le n \\
& Y={{\left[ {{y}_{ij}} \right]}_{p\times q}},\text{ 1}\le \text{i}\le \text{p, 1}\le \text{j}\le \text{q} \\
\end{align}$
Complete step-by-step answer:
Here, $m$ is the number of rows and $n$ is the number of columns in matrix $X$ respectively . Similarly, $p$ is the number of rows and $q$ is the number of columns in the matrix \[Y\]. So, two matrices $X$ and $Y$ can be multiplied as $XY$ if the number of columns of $X$ is equal to the number of rows of $Y$. That is $n=p$.
Mathematically,
Number of columns of$X$ $=$ Number of rows of $Y$
that is $n=p$
So, $XY=\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{1n}} \\
\vdots & \ddots & \vdots \\
{{x}_{m1}} & \cdots & {{x}_{mn}} \\
\end{matrix} \right)\times \left( \begin{matrix}
{{y}_{11}} & \ldots & {{y}_{1q}} \\
\vdots & \ddots & \vdots \\
{{y}_{n1}} & \cdots & {{y}_{nq}} \\
\end{matrix} \right)$
So, here, $n=p$
$X'$ of a matrix is the transpose of matrix$X$
So, if $X=\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{1n}} \\
\vdots & \ddots & \vdots \\
{{x}_{m1}} & \cdots & {{x}_{mn}} \\
\end{matrix} \right)$
Then, $X'={{X}^{T}}=X={{\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{1n}} \\
\vdots & \ddots & \vdots \\
{{x}_{m1}} & \cdots & {{x}_{mn}} \\
\end{matrix} \right)}^{T}}_{m\times n}={{\left( \begin{matrix}
{{x}_{11}} & \ldots & {{x}_{m1}} \\
\vdots & \ddots & \vdots \\
{{x}_{1n}} & \cdots & {{x}_{nm}} \\
\end{matrix} \right)}_{n\times m}}$
So, clearly we can see the order reverses after the transpose of a matrix.
So, for $A={{\left[ {{a}_{ij}} \right]}_{3\times 4}},\text{ 1}\le \text{i}\le \text{3,}\ \text{1}\le \text{j}\le \text{4}$
$A'={{\left[ {{a}_{ji}} \right]}_{4\times 3}},\text{ 1}\le \text{j}\le \text{4,}\ \text{1}\le \text{i}\le \text{3}$
So, order of$A'$is$4\times 3$ and for$B={{\left[ {{b}_{ij}} \right]}_{m\times n}},\ \ \text{1}\le \text{i}\le \text{m, 1}\le \text{j}\le \text{n}$
$B'={{\left[ {{b}_{ji}} \right]}_{n\times m}},\ \text{1}\le \text{j}\le \text{n, 1}\le \text{i}\le \text{m}$
Now, for $A'B$, number of columns of $A'$$=$ number of rows of$B$$\Rightarrow 3=m$
Also, for $B'A$ to be defined number of columns of $B'=$number of rows of$A$$\Rightarrow m=3$
For both cases to be defined, $m$ equal number of rows of $B$ should be $3$ and $n$ can be any number. So, it can be $3$ and $4$ both. So, following that the order of $B$ could be $3\times 3$ or $3\times 4$ respectively.
So, the correct option is option B and option C.
Note: $A'$ is the transpose of matrix $A$. One may not consider it inverse of $A$ unless specified so. Also, if $A'B$ exists then $B'A$ also exists automatically because,
$(A'B)'=B'\left( A' \right)'=B'A$ ( General property of matrices)
So, in simple terms if matrix $A$ exists then its transpose also exists.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

