
If \[a \in R\] and the equation $ - 3{(x - \left[ x \right])^2} + 2(x - \left[ x \right]) + {a^2} = 0 $ (where $ \left[ x \right] $ denotes the greatest integer $ \leqslant x $ ) has no integral solution but has real solution, then all possible values of a lie in the interval:
A. $ ( - 1,0) \cup (0,1) $
B. $ (1,2) $
C. $ ( - 2, - 1) $
D. $ ( - \infty , - 2) \cup (2,\infty ) $
Answer
575.7k+ views
Hint:To solve this first we will convert the above equation into a simple quadratic equation, and will get its root by using quadratic formula. Putting the root in interval of 0 and 1 as it is a fractional part we will get the interval of possible values of a.
Complete step-by-step answer:
The Greatest Integer Function is denoted by $y = [x]$. For all real numbers, x, the greatest integer function returns the largest integer. less than or equal to x. In essence, it rounds down a real number to the nearest integer.
Let $ x - \left[ x \right] = t = \left\{ X \right\} $ , which is a fractional part function.
It lies between 0 and1, $ 0 \leqslant \left\{ X \right\} < 1 $
According to question,\[a \in R\] and the given equation is,
$ - 3{(x - \left[ x \right])^2} + 2(x - \left[ x \right]) + {a^2} = 0 $
Putting $ x - \left[ x \right] = t $ in the above equation we get,
$ - 3{t^2} + 2t + {a^2} = 0 $
Comparing the above equation with $a^2x+bx+c=0$ we get $a=-3$ , $b=2$ and $c=a^2$.
Putting the values in quadratic formula $ t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ in the above equation,
$ t = \dfrac{{ - 2 \pm \sqrt {{{( - 2)}^2} - 4( - 3){a^2}} }}{{2( - 3)}} $
Expanding it we get,
$ t = \dfrac{{ - 2 \pm \sqrt {4 + 12{a^2}} }}{{ - 6}} $
Taking $ \sqrt 4 $ common from the square root term of the right hand side we get two type of solution of +2 and -2, i.e.
$ t = \dfrac{{ - 2 \pm ( - 2)\sqrt {1 + 3{a^2}} }}{{ - 6}} $ and $ t = \dfrac{{ - 2 \pm 2\sqrt {1 + 3{a^2}} }}{{ - 6}} $
Taking -2 common from the numerator of right hand side in both the cases we get, $ t = ( - 2)\dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{{ - 6}} $ and $ t = ( - 2)\dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{{ - 6}} $
Cancelling -2 with -6 of denominator we get,
$ t = \dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{3} $ and $ t = \dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{3} $
$ \because $ $ x - \left[ x \right] = t = \left\{ X \right\} $ (Fractional part)
$ \therefore $ $ 0 \leqslant t \leqslant 1 $
Hence, $ 0 \leqslant \dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{3} \leqslant 1 $ and $ 0 \leqslant \dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{3} \leqslant 1 $
Taking only positive sign as x > 0 we get,
$ 0 \leqslant \dfrac{{1 + \sqrt {1 + 3{a^2}} }}{3} \leqslant 1 $
Multiplying 3 with each we get,
$ 0 \times 3 \leqslant \dfrac{{1 + \sqrt {1 + 3{a^2}} }}{3} \times 3 < 1 \times 3 $
I.e. $ 0 \leqslant 1 + \sqrt {1 + 3{a^2}} \leqslant 3 $
Taking right side part only,
$ 1 + \sqrt {1 + 3{a^2}} \leqslant 3 $
Subtracting 1 from each we get,
$ \sqrt {1 + 3{a^2}} < 2 $
Taking square on both side we get,
$ 1 + 3{a^2} < 4 $
Subtracting 1 from both of the side we get,
$ 3{a^2} < 3 $
Cancelling 3 from both of the side,
$ {a^2} < 1 $
Taking 1 to the left hand side,
$ {a^2} - 1 < 0 $
Expanding the above equation we get,
$ (a - 1)(a + 1) < 0 $
$ \therefore $ $ a \in ( - 1,1) $ , for no integer solution of a, we consider the interval $ ( - 1,0) \cup (0,1) $ .
Hence all possible values of a lie in the interval $ ( - 1,0) \cup (0,1) $ .
So, the correct answer is “Option A”.
Note:A quadratic equation is an equation of the second degree i.e. it contains at least one term which is square.The quadratic formula is given by,
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $.In above question we took only positive sign because x is greater than 0.
Complete step-by-step answer:
The Greatest Integer Function is denoted by $y = [x]$. For all real numbers, x, the greatest integer function returns the largest integer. less than or equal to x. In essence, it rounds down a real number to the nearest integer.
Let $ x - \left[ x \right] = t = \left\{ X \right\} $ , which is a fractional part function.
It lies between 0 and1, $ 0 \leqslant \left\{ X \right\} < 1 $
According to question,\[a \in R\] and the given equation is,
$ - 3{(x - \left[ x \right])^2} + 2(x - \left[ x \right]) + {a^2} = 0 $
Putting $ x - \left[ x \right] = t $ in the above equation we get,
$ - 3{t^2} + 2t + {a^2} = 0 $
Comparing the above equation with $a^2x+bx+c=0$ we get $a=-3$ , $b=2$ and $c=a^2$.
Putting the values in quadratic formula $ t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ in the above equation,
$ t = \dfrac{{ - 2 \pm \sqrt {{{( - 2)}^2} - 4( - 3){a^2}} }}{{2( - 3)}} $
Expanding it we get,
$ t = \dfrac{{ - 2 \pm \sqrt {4 + 12{a^2}} }}{{ - 6}} $
Taking $ \sqrt 4 $ common from the square root term of the right hand side we get two type of solution of +2 and -2, i.e.
$ t = \dfrac{{ - 2 \pm ( - 2)\sqrt {1 + 3{a^2}} }}{{ - 6}} $ and $ t = \dfrac{{ - 2 \pm 2\sqrt {1 + 3{a^2}} }}{{ - 6}} $
Taking -2 common from the numerator of right hand side in both the cases we get, $ t = ( - 2)\dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{{ - 6}} $ and $ t = ( - 2)\dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{{ - 6}} $
Cancelling -2 with -6 of denominator we get,
$ t = \dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{3} $ and $ t = \dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{3} $
$ \because $ $ x - \left[ x \right] = t = \left\{ X \right\} $ (Fractional part)
$ \therefore $ $ 0 \leqslant t \leqslant 1 $
Hence, $ 0 \leqslant \dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{3} \leqslant 1 $ and $ 0 \leqslant \dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{3} \leqslant 1 $
Taking only positive sign as x > 0 we get,
$ 0 \leqslant \dfrac{{1 + \sqrt {1 + 3{a^2}} }}{3} \leqslant 1 $
Multiplying 3 with each we get,
$ 0 \times 3 \leqslant \dfrac{{1 + \sqrt {1 + 3{a^2}} }}{3} \times 3 < 1 \times 3 $
I.e. $ 0 \leqslant 1 + \sqrt {1 + 3{a^2}} \leqslant 3 $
Taking right side part only,
$ 1 + \sqrt {1 + 3{a^2}} \leqslant 3 $
Subtracting 1 from each we get,
$ \sqrt {1 + 3{a^2}} < 2 $
Taking square on both side we get,
$ 1 + 3{a^2} < 4 $
Subtracting 1 from both of the side we get,
$ 3{a^2} < 3 $
Cancelling 3 from both of the side,
$ {a^2} < 1 $
Taking 1 to the left hand side,
$ {a^2} - 1 < 0 $
Expanding the above equation we get,
$ (a - 1)(a + 1) < 0 $
$ \therefore $ $ a \in ( - 1,1) $ , for no integer solution of a, we consider the interval $ ( - 1,0) \cup (0,1) $ .
Hence all possible values of a lie in the interval $ ( - 1,0) \cup (0,1) $ .
So, the correct answer is “Option A”.
Note:A quadratic equation is an equation of the second degree i.e. it contains at least one term which is square.The quadratic formula is given by,
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $.In above question we took only positive sign because x is greater than 0.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

