
If A, G and 4 are AM, GM and HM of two numbers respectively and $2A+{{G}^{2}}=27$ then the numbers are
\[\begin{align}
& \text{A}.\text{ 8},\text{ 2} \\
& \text{B}.\text{ 8},\text{ 6} \\
& \text{C}.\text{ 6},\text{ 3} \\
& \text{D}.\text{ 6},\text{ 4} \\
\end{align}\]
Answer
512.4k+ views
Hint: We will use the formula of AM and GM and HM of two numbers which are given as \[AM=\dfrac{a+b}{2},GM=\sqrt{ab}\text{ and HM=}\dfrac{2ab}{a+b}\]. We will also use the fact that AM and GM are related as \[AM=\dfrac{a+b}{2}\text{ and }{{\left( GM \right)}^{2}}=ab\]. First, we will start by using HM = 4 and formula of HM. We will then try forming new equations using all the above formulas and relations and apply the relation given as $2A+{{G}^{2}}=27$. We will get a set of equations, which on solving will get us values of a and b.
Complete step-by-step answer:
Given that, A, G and 4 are AM, GM and HM of two numbers respectively.
Let a and b be two numbers then, we will use the formula of AM and GM and HM of two numbers which are given as
\[AM=\dfrac{a+b}{2},GM=\sqrt{ab}\text{ and HM=}\dfrac{2ab}{a+b}\]
Now, given that HM = 4 and
\[\begin{align}
& \text{HM=}\dfrac{2ab}{a+b} \\
& \Rightarrow 4=\dfrac{2ab}{a+b} \\
& \text{Take }\dfrac{a+b}{2}=AM=A \\
& \text{and ab=}{{\left( GM \right)}^{2}}={{G}^{2}} \\
\end{align}\]
Substituting the values in above equation we get:
\[\begin{align}
& 4=\dfrac{{{G}^{2}}}{A} \\
& \Rightarrow {{G}^{2}}=4A\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Given that, \[2A+{{G}^{2}}=27\]
Substituting values of ${{G}^{2}}=4A$ from equation (i) we get:
\[\begin{align}
& 2A+4A=27 \\
& \Rightarrow 6A=27 \\
\end{align}\]
Divide by 6 we get:
\[\begin{align}
& A=\dfrac{27}{6}=\dfrac{9}{2} \\
& \Rightarrow A=\dfrac{9}{2} \\
\end{align}\]
From (i) we have ${{G}^{2}}=4A$
\[\begin{align}
& {{G}^{2}}=4\left( \dfrac{9}{2} \right) \\
& {{G}^{2}}=18 \\
\end{align}\]
So, we have obtained $AM;\text{ }A=\dfrac{9}{2}$
\[\begin{align}
& \Rightarrow \dfrac{a+b}{2}=\dfrac{9}{2} \\
& \Rightarrow a+b=9 \\
& \Rightarrow b=9-a\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Also, we have obtained $GM;\text{ G=}\sqrt{18}$
\[\Rightarrow \sqrt{ab}=\sqrt{18}\]
Squaring both sides
\[\left( ab \right)=18\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Substituting value of b = 9-a from equation (ii) into equation (iii) we get
\[\begin{align}
& \Rightarrow \left( a\left( 9-a \right) \right)=18 \\
& \Rightarrow \left( 9a-{{a}^{2}} \right)=18 \\
& \Rightarrow {{a}^{2}}-9a+18=0 \\
\end{align}\]
Splitting middle term, we get:
\[\begin{align}
& {{a}^{2}}-6a-3a+18=0 \\
& a\left( a-6 \right)-3\left( a-6 \right)=0 \\
& a=3,6 \\
\end{align}\]
When a = 3 using equation (i),
\[\Rightarrow b=9-3=6\]
When a = 6 using equation (i),
\[\Rightarrow b=9-6=3\]
Therefore, the numbers are 3 and 6.
So, the correct answer is “Option C”.
Note: The key point to note in this question is that, when value of a is obtained to be 6 and 3 then, this is taken as answer. This step is wrong even if the value of both numbers are coming to be 3 and 6 then also we would consider b also separately to get the result.
Complete step-by-step answer:
Given that, A, G and 4 are AM, GM and HM of two numbers respectively.
Let a and b be two numbers then, we will use the formula of AM and GM and HM of two numbers which are given as
\[AM=\dfrac{a+b}{2},GM=\sqrt{ab}\text{ and HM=}\dfrac{2ab}{a+b}\]
Now, given that HM = 4 and
\[\begin{align}
& \text{HM=}\dfrac{2ab}{a+b} \\
& \Rightarrow 4=\dfrac{2ab}{a+b} \\
& \text{Take }\dfrac{a+b}{2}=AM=A \\
& \text{and ab=}{{\left( GM \right)}^{2}}={{G}^{2}} \\
\end{align}\]
Substituting the values in above equation we get:
\[\begin{align}
& 4=\dfrac{{{G}^{2}}}{A} \\
& \Rightarrow {{G}^{2}}=4A\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Given that, \[2A+{{G}^{2}}=27\]
Substituting values of ${{G}^{2}}=4A$ from equation (i) we get:
\[\begin{align}
& 2A+4A=27 \\
& \Rightarrow 6A=27 \\
\end{align}\]
Divide by 6 we get:
\[\begin{align}
& A=\dfrac{27}{6}=\dfrac{9}{2} \\
& \Rightarrow A=\dfrac{9}{2} \\
\end{align}\]
From (i) we have ${{G}^{2}}=4A$
\[\begin{align}
& {{G}^{2}}=4\left( \dfrac{9}{2} \right) \\
& {{G}^{2}}=18 \\
\end{align}\]
So, we have obtained $AM;\text{ }A=\dfrac{9}{2}$
\[\begin{align}
& \Rightarrow \dfrac{a+b}{2}=\dfrac{9}{2} \\
& \Rightarrow a+b=9 \\
& \Rightarrow b=9-a\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Also, we have obtained $GM;\text{ G=}\sqrt{18}$
\[\Rightarrow \sqrt{ab}=\sqrt{18}\]
Squaring both sides
\[\left( ab \right)=18\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Substituting value of b = 9-a from equation (ii) into equation (iii) we get
\[\begin{align}
& \Rightarrow \left( a\left( 9-a \right) \right)=18 \\
& \Rightarrow \left( 9a-{{a}^{2}} \right)=18 \\
& \Rightarrow {{a}^{2}}-9a+18=0 \\
\end{align}\]
Splitting middle term, we get:
\[\begin{align}
& {{a}^{2}}-6a-3a+18=0 \\
& a\left( a-6 \right)-3\left( a-6 \right)=0 \\
& a=3,6 \\
\end{align}\]
When a = 3 using equation (i),
\[\Rightarrow b=9-3=6\]
When a = 6 using equation (i),
\[\Rightarrow b=9-6=3\]
Therefore, the numbers are 3 and 6.
So, the correct answer is “Option C”.
Note: The key point to note in this question is that, when value of a is obtained to be 6 and 3 then, this is taken as answer. This step is wrong even if the value of both numbers are coming to be 3 and 6 then also we would consider b also separately to get the result.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
