
If A, G and 4 are AM, GM and HM of two numbers respectively and $2A+{{G}^{2}}=27$ then the numbers are
\[\begin{align}
& \text{A}.\text{ 8},\text{ 2} \\
& \text{B}.\text{ 8},\text{ 6} \\
& \text{C}.\text{ 6},\text{ 3} \\
& \text{D}.\text{ 6},\text{ 4} \\
\end{align}\]
Answer
577.5k+ views
Hint: We will use the formula of AM and GM and HM of two numbers which are given as \[AM=\dfrac{a+b}{2},GM=\sqrt{ab}\text{ and HM=}\dfrac{2ab}{a+b}\]. We will also use the fact that AM and GM are related as \[AM=\dfrac{a+b}{2}\text{ and }{{\left( GM \right)}^{2}}=ab\]. First, we will start by using HM = 4 and formula of HM. We will then try forming new equations using all the above formulas and relations and apply the relation given as $2A+{{G}^{2}}=27$. We will get a set of equations, which on solving will get us values of a and b.
Complete step-by-step answer:
Given that, A, G and 4 are AM, GM and HM of two numbers respectively.
Let a and b be two numbers then, we will use the formula of AM and GM and HM of two numbers which are given as
\[AM=\dfrac{a+b}{2},GM=\sqrt{ab}\text{ and HM=}\dfrac{2ab}{a+b}\]
Now, given that HM = 4 and
\[\begin{align}
& \text{HM=}\dfrac{2ab}{a+b} \\
& \Rightarrow 4=\dfrac{2ab}{a+b} \\
& \text{Take }\dfrac{a+b}{2}=AM=A \\
& \text{and ab=}{{\left( GM \right)}^{2}}={{G}^{2}} \\
\end{align}\]
Substituting the values in above equation we get:
\[\begin{align}
& 4=\dfrac{{{G}^{2}}}{A} \\
& \Rightarrow {{G}^{2}}=4A\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Given that, \[2A+{{G}^{2}}=27\]
Substituting values of ${{G}^{2}}=4A$ from equation (i) we get:
\[\begin{align}
& 2A+4A=27 \\
& \Rightarrow 6A=27 \\
\end{align}\]
Divide by 6 we get:
\[\begin{align}
& A=\dfrac{27}{6}=\dfrac{9}{2} \\
& \Rightarrow A=\dfrac{9}{2} \\
\end{align}\]
From (i) we have ${{G}^{2}}=4A$
\[\begin{align}
& {{G}^{2}}=4\left( \dfrac{9}{2} \right) \\
& {{G}^{2}}=18 \\
\end{align}\]
So, we have obtained $AM;\text{ }A=\dfrac{9}{2}$
\[\begin{align}
& \Rightarrow \dfrac{a+b}{2}=\dfrac{9}{2} \\
& \Rightarrow a+b=9 \\
& \Rightarrow b=9-a\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Also, we have obtained $GM;\text{ G=}\sqrt{18}$
\[\Rightarrow \sqrt{ab}=\sqrt{18}\]
Squaring both sides
\[\left( ab \right)=18\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Substituting value of b = 9-a from equation (ii) into equation (iii) we get
\[\begin{align}
& \Rightarrow \left( a\left( 9-a \right) \right)=18 \\
& \Rightarrow \left( 9a-{{a}^{2}} \right)=18 \\
& \Rightarrow {{a}^{2}}-9a+18=0 \\
\end{align}\]
Splitting middle term, we get:
\[\begin{align}
& {{a}^{2}}-6a-3a+18=0 \\
& a\left( a-6 \right)-3\left( a-6 \right)=0 \\
& a=3,6 \\
\end{align}\]
When a = 3 using equation (i),
\[\Rightarrow b=9-3=6\]
When a = 6 using equation (i),
\[\Rightarrow b=9-6=3\]
Therefore, the numbers are 3 and 6.
So, the correct answer is “Option C”.
Note: The key point to note in this question is that, when value of a is obtained to be 6 and 3 then, this is taken as answer. This step is wrong even if the value of both numbers are coming to be 3 and 6 then also we would consider b also separately to get the result.
Complete step-by-step answer:
Given that, A, G and 4 are AM, GM and HM of two numbers respectively.
Let a and b be two numbers then, we will use the formula of AM and GM and HM of two numbers which are given as
\[AM=\dfrac{a+b}{2},GM=\sqrt{ab}\text{ and HM=}\dfrac{2ab}{a+b}\]
Now, given that HM = 4 and
\[\begin{align}
& \text{HM=}\dfrac{2ab}{a+b} \\
& \Rightarrow 4=\dfrac{2ab}{a+b} \\
& \text{Take }\dfrac{a+b}{2}=AM=A \\
& \text{and ab=}{{\left( GM \right)}^{2}}={{G}^{2}} \\
\end{align}\]
Substituting the values in above equation we get:
\[\begin{align}
& 4=\dfrac{{{G}^{2}}}{A} \\
& \Rightarrow {{G}^{2}}=4A\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Given that, \[2A+{{G}^{2}}=27\]
Substituting values of ${{G}^{2}}=4A$ from equation (i) we get:
\[\begin{align}
& 2A+4A=27 \\
& \Rightarrow 6A=27 \\
\end{align}\]
Divide by 6 we get:
\[\begin{align}
& A=\dfrac{27}{6}=\dfrac{9}{2} \\
& \Rightarrow A=\dfrac{9}{2} \\
\end{align}\]
From (i) we have ${{G}^{2}}=4A$
\[\begin{align}
& {{G}^{2}}=4\left( \dfrac{9}{2} \right) \\
& {{G}^{2}}=18 \\
\end{align}\]
So, we have obtained $AM;\text{ }A=\dfrac{9}{2}$
\[\begin{align}
& \Rightarrow \dfrac{a+b}{2}=\dfrac{9}{2} \\
& \Rightarrow a+b=9 \\
& \Rightarrow b=9-a\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Also, we have obtained $GM;\text{ G=}\sqrt{18}$
\[\Rightarrow \sqrt{ab}=\sqrt{18}\]
Squaring both sides
\[\left( ab \right)=18\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Substituting value of b = 9-a from equation (ii) into equation (iii) we get
\[\begin{align}
& \Rightarrow \left( a\left( 9-a \right) \right)=18 \\
& \Rightarrow \left( 9a-{{a}^{2}} \right)=18 \\
& \Rightarrow {{a}^{2}}-9a+18=0 \\
\end{align}\]
Splitting middle term, we get:
\[\begin{align}
& {{a}^{2}}-6a-3a+18=0 \\
& a\left( a-6 \right)-3\left( a-6 \right)=0 \\
& a=3,6 \\
\end{align}\]
When a = 3 using equation (i),
\[\Rightarrow b=9-3=6\]
When a = 6 using equation (i),
\[\Rightarrow b=9-6=3\]
Therefore, the numbers are 3 and 6.
So, the correct answer is “Option C”.
Note: The key point to note in this question is that, when value of a is obtained to be 6 and 3 then, this is taken as answer. This step is wrong even if the value of both numbers are coming to be 3 and 6 then also we would consider b also separately to get the result.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

