
If a function is given as\[y=\dfrac{1}{a+\sqrt{x}}\], then find the value of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
Answer
521.7k+ views
Hint: The first order derivative is found using the formula $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$. And the second order derivative is found using the formula \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\].
Complete step-by-step solution -
The given expression is
\[y=\dfrac{1}{a+\sqrt{x}}\]
This can be re-written as,
\[y={{\left( a+\sqrt{x} \right)}^{-1}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to $'x'$, we get
\[\dfrac{d}{dx}(y)=\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-1}} \right)\]
Now we know $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$ , applying this formula, the above equation becomes,
\[\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-1-1}}\dfrac{d}{dx}\left( a+\sqrt{x} \right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$ . Applying this formula in the above equation, we get
\[\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-2}}\left[ \dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right]\]
We know the differentiation of constant term is always zero, so
\[\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-2}}\left[ 0+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right]\]
Now applying the formula $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$, the above equation becomes,
\[\dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{1}{2}-1}}\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{1-2}{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-1}{2}{{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{-1}{2}{{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \right)\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\dfrac{d}{dx}\left( {{\left( x \right)}^{\dfrac{-1}{2}}} \right)+{{\left( x \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-2}} \right) \right]\]
Now we know $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$ , applying this formula, the above equation becomes,
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-1}{2}-1}}+{{\left( x \right)}^{\dfrac{-1}{2}}}(-2){{\left( a+\sqrt{x} \right)}^{-2-1}}\dfrac{d}{dx}\left( a+\sqrt{x} \right) \right]\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$ . Applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-1-2}{2}}}-2{{\left( x \right)}^{\dfrac{-1}{2}}}{{\left( a+\sqrt{x} \right)}^{-3}}\left[ \dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right] \right]\]
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-3}{2}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ 0+\dfrac{1}{2}{{\left( x \right)}^{\dfrac{1}{2}-1}} \right] \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ \dfrac{1}{2}{{\left( x \right)}^{\dfrac{-1}{2}}} \right] \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ \dfrac{1}{2\sqrt{x}} \right] \right] \\
\end{align}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{1}{x{{\left( a+\sqrt{x} \right)}^{3}}} \right]\]
Opening the bracket, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{-1}{2} \right).\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\left( \dfrac{-1}{2} \right).\dfrac{1}{x{{\left( a+\sqrt{x} \right)}^{3}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{4{{\left( a+\sqrt{x} \right)}^{2}}{{\left( x \right)}^{\dfrac{3}{2}}}}+\dfrac{1}{2x{{\left( a+\sqrt{x} \right)}^{3}}} \\
\end{align}\]
Taking the LCM, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+\sqrt{x} \right)+2\sqrt{x}}{4{{\left( a+\sqrt{x} \right)}^{3}}{{\left( x \right)}^{\dfrac{3}{2}}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+3\sqrt{x} \right)}{4{{\left( x \right)}^{\dfrac{3}{2}}}}\times \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}} \\
\end{align}\]
From the given expression we have \[y=\dfrac{1}{a+\sqrt{x}}\] , substituting this value in above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+3\sqrt{x} \right)}{4{{\left( x \right)}^{\dfrac{3}{2}}}}\times {{y}^{3}}\]
This is the required answer.
Note: The way to solve the first and second order derivative is using the formula, $\dfrac{d}{dx}\left( \dfrac{1}{u(x)} \right)=-\dfrac{u'(x)}{u{{(x)}^{2}}}$ . In this method also we will get the same result.
Complete step-by-step solution -
The given expression is
\[y=\dfrac{1}{a+\sqrt{x}}\]
This can be re-written as,
\[y={{\left( a+\sqrt{x} \right)}^{-1}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to $'x'$, we get
\[\dfrac{d}{dx}(y)=\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-1}} \right)\]
Now we know $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$ , applying this formula, the above equation becomes,
\[\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-1-1}}\dfrac{d}{dx}\left( a+\sqrt{x} \right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$ . Applying this formula in the above equation, we get
\[\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-2}}\left[ \dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right]\]
We know the differentiation of constant term is always zero, so
\[\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-2}}\left[ 0+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right]\]
Now applying the formula $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$, the above equation becomes,
\[\dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{1}{2}-1}}\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{1-2}{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-1}{2}{{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{-1}{2}{{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \right)\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\dfrac{d}{dx}\left( {{\left( x \right)}^{\dfrac{-1}{2}}} \right)+{{\left( x \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-2}} \right) \right]\]
Now we know $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$ , applying this formula, the above equation becomes,
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-1}{2}-1}}+{{\left( x \right)}^{\dfrac{-1}{2}}}(-2){{\left( a+\sqrt{x} \right)}^{-2-1}}\dfrac{d}{dx}\left( a+\sqrt{x} \right) \right]\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$ . Applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-1-2}{2}}}-2{{\left( x \right)}^{\dfrac{-1}{2}}}{{\left( a+\sqrt{x} \right)}^{-3}}\left[ \dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right] \right]\]
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-3}{2}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ 0+\dfrac{1}{2}{{\left( x \right)}^{\dfrac{1}{2}-1}} \right] \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ \dfrac{1}{2}{{\left( x \right)}^{\dfrac{-1}{2}}} \right] \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ \dfrac{1}{2\sqrt{x}} \right] \right] \\
\end{align}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{1}{x{{\left( a+\sqrt{x} \right)}^{3}}} \right]\]
Opening the bracket, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{-1}{2} \right).\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\left( \dfrac{-1}{2} \right).\dfrac{1}{x{{\left( a+\sqrt{x} \right)}^{3}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{4{{\left( a+\sqrt{x} \right)}^{2}}{{\left( x \right)}^{\dfrac{3}{2}}}}+\dfrac{1}{2x{{\left( a+\sqrt{x} \right)}^{3}}} \\
\end{align}\]
Taking the LCM, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+\sqrt{x} \right)+2\sqrt{x}}{4{{\left( a+\sqrt{x} \right)}^{3}}{{\left( x \right)}^{\dfrac{3}{2}}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+3\sqrt{x} \right)}{4{{\left( x \right)}^{\dfrac{3}{2}}}}\times \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}} \\
\end{align}\]
From the given expression we have \[y=\dfrac{1}{a+\sqrt{x}}\] , substituting this value in above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+3\sqrt{x} \right)}{4{{\left( x \right)}^{\dfrac{3}{2}}}}\times {{y}^{3}}\]
This is the required answer.
Note: The way to solve the first and second order derivative is using the formula, $\dfrac{d}{dx}\left( \dfrac{1}{u(x)} \right)=-\dfrac{u'(x)}{u{{(x)}^{2}}}$ . In this method also we will get the same result.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
