
If a function is given as $y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}$ then $\dfrac{dy}{dx}$ equals:
A.$\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}$
B.$\dfrac{1}{2}{{\csc }^{2}}\dfrac{x}{2}$
C.${{\sec }^{2}}\dfrac{x}{2}$
D.${{\csc }^{2}}\dfrac{x}{2}$
Answer
506.1k+ views
Hint: It is given that $y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}$. We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ so substituting the values of $\left( 1-\cos x \right)\And \left( 1+\cos x \right)$ in equation of y we get, $y=\tan \dfrac{x}{2}$. Now, differentiate y with respect to x which will give the required answer. The differentiation is done using chain rule.
Complete step-by-step answer:
It is given that:
$y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}$
We know that,
$1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$
$1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
Substituting the above values of $\left( 1-\cos x \right)\And \left( 1+\cos x \right)$ in equation of y we get,
$\begin{align}
& y=\sqrt{\dfrac{1-\cos x}{1+\cos x}} \\
& \Rightarrow y=\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}} \\
\end{align}$
In the above equation, 2 will be cancelled out from the numerator and the denominator.
$\begin{align}
& y=\sqrt{\dfrac{{{\sin }^{2}}\dfrac{x}{2}}{{{\cos }^{2}}\dfrac{x}{2}}} \\
& \Rightarrow y=\sqrt{{{\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}}.........Eq.\left( 1 \right) \\
\end{align}$
We know that,
$\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}$
Substituting the above relation in eq. (1) we get,
$\begin{align}
& y=\sqrt{{{\left( \tan \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow y=\tan \dfrac{x}{2}.........Eq.\left( 2 \right) \\
\end{align}$
Let us assume that;
$\dfrac{x}{2}=t$
On cross – multiplying the above equation we get,
$x=2t$
Differentiating on both the sides we get,
$dx=2dt$……….. Eq. (3)
Substituting $\dfrac{x}{2}=t$ in eq. (2) we get,
$y=\tan t$
Differentiating both the sides with respect to x we get,
$\dfrac{dy}{dt}={{\sec }^{2}}t$……. Eq. (4)
As we have to find $\dfrac{dy}{dx}$ so we can write $\dfrac{dy}{dt}$ as follows:
$\dfrac{dy}{dt}=\dfrac{dy}{dx}\left( \dfrac{dx}{dt} \right)$…… Eq. (5)
Rearranging eq. (3) we get,
$\begin{align}
& dx=2dt \\
& \Rightarrow \dfrac{dx}{dt}=2 \\
\end{align}$
Substituting the above value in eq. (5) we get,
$\dfrac{dy}{dt}=\dfrac{dy}{dx}\left( 2 \right)$
Now, substituting the above value in eq. (4) and $t=\dfrac{x}{2}$ we get,
$2\dfrac{dy}{dx}={{\sec }^{2}}\dfrac{x}{2}$
Dividing 2 on both the sides of the above equation we get,
$\dfrac{dy}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}$
From the above solution, we have got the derivative of $y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}$ with respect to x is $\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}$.
Hence, the correct option is (a).
Note: The plausible areas in the solution where you can go wrong is:
In writing the trigonometric identity of $\left( 1-\cos x \right)\And \left( 1+\cos x \right)$, you might interchange the values corresponding to these trigonometric functions which is demonstrated below.
$1-\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
$1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$
Be careful about where 2 should come in the result of the derivative with respect to x. There is a chance of calculation mistake in the final answer whether 2 should be multiplied or divided by ${{\sec }^{2}}\dfrac{x}{2}$.
Complete step-by-step answer:
It is given that:
$y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}$
We know that,
$1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$
$1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
Substituting the above values of $\left( 1-\cos x \right)\And \left( 1+\cos x \right)$ in equation of y we get,
$\begin{align}
& y=\sqrt{\dfrac{1-\cos x}{1+\cos x}} \\
& \Rightarrow y=\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}} \\
\end{align}$
In the above equation, 2 will be cancelled out from the numerator and the denominator.
$\begin{align}
& y=\sqrt{\dfrac{{{\sin }^{2}}\dfrac{x}{2}}{{{\cos }^{2}}\dfrac{x}{2}}} \\
& \Rightarrow y=\sqrt{{{\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}}.........Eq.\left( 1 \right) \\
\end{align}$
We know that,
$\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}$
Substituting the above relation in eq. (1) we get,
$\begin{align}
& y=\sqrt{{{\left( \tan \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow y=\tan \dfrac{x}{2}.........Eq.\left( 2 \right) \\
\end{align}$
Let us assume that;
$\dfrac{x}{2}=t$
On cross – multiplying the above equation we get,
$x=2t$
Differentiating on both the sides we get,
$dx=2dt$……….. Eq. (3)
Substituting $\dfrac{x}{2}=t$ in eq. (2) we get,
$y=\tan t$
Differentiating both the sides with respect to x we get,
$\dfrac{dy}{dt}={{\sec }^{2}}t$……. Eq. (4)
As we have to find $\dfrac{dy}{dx}$ so we can write $\dfrac{dy}{dt}$ as follows:
$\dfrac{dy}{dt}=\dfrac{dy}{dx}\left( \dfrac{dx}{dt} \right)$…… Eq. (5)
Rearranging eq. (3) we get,
$\begin{align}
& dx=2dt \\
& \Rightarrow \dfrac{dx}{dt}=2 \\
\end{align}$
Substituting the above value in eq. (5) we get,
$\dfrac{dy}{dt}=\dfrac{dy}{dx}\left( 2 \right)$
Now, substituting the above value in eq. (4) and $t=\dfrac{x}{2}$ we get,
$2\dfrac{dy}{dx}={{\sec }^{2}}\dfrac{x}{2}$
Dividing 2 on both the sides of the above equation we get,
$\dfrac{dy}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}$
From the above solution, we have got the derivative of $y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}$ with respect to x is $\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}$.
Hence, the correct option is (a).
Note: The plausible areas in the solution where you can go wrong is:
In writing the trigonometric identity of $\left( 1-\cos x \right)\And \left( 1+\cos x \right)$, you might interchange the values corresponding to these trigonometric functions which is demonstrated below.
$1-\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
$1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$
Be careful about where 2 should come in the result of the derivative with respect to x. There is a chance of calculation mistake in the final answer whether 2 should be multiplied or divided by ${{\sec }^{2}}\dfrac{x}{2}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
