
If a function is given as $y=\dfrac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}$, then $\dfrac{dy}{dx}$ is equal to
(a) $-\dfrac{1}{2}{{sec}^{2}}\dfrac{x}{2}$
(b) $-\dfrac{1}{2}{{sec}}\dfrac{x}{2}$
(c) $-\dfrac{1}{2}{{sec}^{2}}{x}$
(d) $-{{sec}^{2}}\dfrac{x}{2}$
Answer
618.3k+ views
First solve $\left( 1-\sin x \right)$ and $\left( 1+\sin x \right)$, then substitute in the given expression and simplify the expression. Then apply the Quotient rule of differentiation.
Complete step-by-step solution -
Given,
$y=\dfrac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}.........(i)$
First we will solve $\left( 1-\sin x \right)$ and $\left( 1+\sin x \right)$ separately.
We know, ${{\sin }^{2}}x+{{\cos }^{2}}x=1,\sin 2x=2\sin x\cos x$
So,
\[1-\sin x={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\]
And ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$, so
\[1-\sin x={{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}\ldots \ldots .\left( ii \right)\]
Similarly,
\[1+\sin x={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}\ldots \ldots .\left( iii \right)\]
Substituting equation (ii) and (iii) in equation (i), we get
\[y=\dfrac{\sqrt{{{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}}+\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}}{\sqrt{{{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}}-\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}}\]
\[\Rightarrow y=\dfrac{\sin \dfrac{x}{2}-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}-\cos \dfrac{x}{2}-\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}\]
\[\Rightarrow y=\dfrac{2\sin \dfrac{x}{2}}{-2\cos \dfrac{x}{2}}\]
\[\Rightarrow y=-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}\]
Now we will differentiate with respect to x, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( -\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)\]
Now we will apply the quotient rule, i.e., $\left( \dfrac{u\left( x \right)}{v\left( x \right)} \right)'=\dfrac{{u}'\left( x \right).v\left( x \right)-u\left( x \right).{v}'\left( x \right)}{v{{\left( x \right)}^{2}}}$, so
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\dfrac{d}{dx}\left( \sin \dfrac{x}{2} \right)\times \left( \cos \dfrac{x}{2} \right)-\left( \sin \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \cos \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
We know differentiation of $\sin x$ and $\cos x$ is $\cos x$ and $-\sin x$, so above equation becomes,
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\cos \dfrac{x}{2}\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\times \left( \cos \dfrac{x}{2} \right)-\left( \sin \dfrac{x}{2} \right)\left( -\sin \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{\cos }^{2}}\dfrac{x}{2}\left( \dfrac{1}{2} \right)+\left( {{\sin }^{2}}\dfrac{x}{2} \right)\left( \dfrac{1}{2} \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\dfrac{1}{2}\left( {{\cos }^{2}}\dfrac{x}{2}+\left( {{\sin }^{2}}\dfrac{x}{2} \right) \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
But $\left( {{\sin }^{2}}x+{{\cos }^{2}}x=1 \right)$, so above equation becomes,
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\dfrac{1}{2}\left( 1 \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}}\]
But we know, $\sec x=\dfrac{1}{\cos x}$, so above equation becomes,
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{1}{2}{{\sec }^{2}}x\]
Hence, the correct option for the given question is option (a).
So,the answer is option (a).
Note: In this seeing the question we will first rationalize the given equation and try to find the differentiation. It is possible to get the answer but the solution process will be lengthy.
Complete step-by-step solution -
Given,
$y=\dfrac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}.........(i)$
First we will solve $\left( 1-\sin x \right)$ and $\left( 1+\sin x \right)$ separately.
We know, ${{\sin }^{2}}x+{{\cos }^{2}}x=1,\sin 2x=2\sin x\cos x$
So,
\[1-\sin x={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\]
And ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$, so
\[1-\sin x={{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}\ldots \ldots .\left( ii \right)\]
Similarly,
\[1+\sin x={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}\ldots \ldots .\left( iii \right)\]
Substituting equation (ii) and (iii) in equation (i), we get
\[y=\dfrac{\sqrt{{{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}}+\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}}{\sqrt{{{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}}-\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}}\]
\[\Rightarrow y=\dfrac{\sin \dfrac{x}{2}-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}-\cos \dfrac{x}{2}-\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}\]
\[\Rightarrow y=\dfrac{2\sin \dfrac{x}{2}}{-2\cos \dfrac{x}{2}}\]
\[\Rightarrow y=-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}\]
Now we will differentiate with respect to x, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( -\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)\]
Now we will apply the quotient rule, i.e., $\left( \dfrac{u\left( x \right)}{v\left( x \right)} \right)'=\dfrac{{u}'\left( x \right).v\left( x \right)-u\left( x \right).{v}'\left( x \right)}{v{{\left( x \right)}^{2}}}$, so
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\dfrac{d}{dx}\left( \sin \dfrac{x}{2} \right)\times \left( \cos \dfrac{x}{2} \right)-\left( \sin \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \cos \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
We know differentiation of $\sin x$ and $\cos x$ is $\cos x$ and $-\sin x$, so above equation becomes,
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\cos \dfrac{x}{2}\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\times \left( \cos \dfrac{x}{2} \right)-\left( \sin \dfrac{x}{2} \right)\left( -\sin \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{\cos }^{2}}\dfrac{x}{2}\left( \dfrac{1}{2} \right)+\left( {{\sin }^{2}}\dfrac{x}{2} \right)\left( \dfrac{1}{2} \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\dfrac{1}{2}\left( {{\cos }^{2}}\dfrac{x}{2}+\left( {{\sin }^{2}}\dfrac{x}{2} \right) \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
But $\left( {{\sin }^{2}}x+{{\cos }^{2}}x=1 \right)$, so above equation becomes,
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{\dfrac{1}{2}\left( 1 \right)}{{{\left( \cos \dfrac{x}{2} \right)}^{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}}\]
But we know, $\sec x=\dfrac{1}{\cos x}$, so above equation becomes,
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{1}{2}{{\sec }^{2}}x\]
Hence, the correct option for the given question is option (a).
So,the answer is option (a).
Note: In this seeing the question we will first rationalize the given equation and try to find the differentiation. It is possible to get the answer but the solution process will be lengthy.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

