
If a fair coin is tossed $10$ times. Find the probability of
a). Exactly $6$ heads
b). At least $6$ heads
c). At most $6$ heads
Answer
573.9k+ views
Hint: We will first assume the number heads appearing as $x$. If the coin has a Bernoulli trial then $x$ must have a binomial distribution. From the distribution we will find the value of $\text{P}\left( \text{X}=x \right)$ by using the formula $\text{P}\left( \text{X}=x \right)={}^{n}{{\text{C}}_{x}}{{q}^{n-x}}{{p}^{x}}$. Here we will substitute the values of $n$ and $p$ from the given data and simplify the value of $\text{P}\left( \text{X}=x \right)$. Now to find the probabilities of each case we need to apply the values of $x$according to the condition, in $\text{P}\left( \text{X}=x \right)$. In the first condition we need to find the probability of getting $6$ heads, so we will substitute the value $x=6$ in $\text{P}\left( \text{X}=x \right)$ and we will find the value of probability. For the second case we need to find the probability of getting At least $6$ heads, so we will substitute $x\ge 6$ in $\text{P}\left( \text{X}=x \right)$ and we will find the value of probability. For the third case we need to find the probability of getting At most $6$ heads, so we will substitute $x\le 6$ in $\text{P}\left( \text{X}=x \right)$ and we will find the value of probability.
Complete step-by-step solution
Given that, A fair coin is tossed $10$ times, then
$n=10$
Let the number heads appear as $x$.
If coin toss is Bernoulli trial, then the binomial distribution for the variable $x$ I given by
$\text{P}\left( \text{X}=x \right)={}^{n}{{\text{C}}_{x}}{{q}^{n-x}}{{p}^{x}}$
Where
$p$ is the probability of getting head.
$q$ is the probability of not getting head.
We know that when we tossed a coin the probability of getting head is $\dfrac{1}{2}$, then
$p=\dfrac{1}{2}$
We know that sum of probabilities is equal to $1$, then
$p+q=1$
$\Rightarrow q=1-\dfrac{1}{2}=\dfrac{1}{2}$
Hence the distribution is
$\begin{align}
& \text{P}\left( \text{X}=x \right)={}^{10}{{\text{C}}_{x}}{{\left( \dfrac{1}{2} \right)}^{10-x}}{{\left( \dfrac{1}{2} \right)}^{x}} \\
& ={}^{10}{{\text{C}}_{x}}{{\left( \dfrac{1}{2} \right)}^{10-x+x}} \\
& ={}^{10}{{\text{C}}_{x}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
\end{align}$
Now the probability of getting exactly $6$ heads is
$\text{P}\left( \text{X}=6 \right)={}^{10}{{\text{C}}_{6}}{{\left( \dfrac{1}{2} \right)}^{10}}$
We know that ${}^{n}{{\text{C}}_{r}}=\dfrac{n!}{\left( n-r \right)!.r!}$, then
$\begin{align}
& \text{P}\left( \text{X}=6 \right)=\dfrac{10!}{\left( 10-6 \right)!6!}.\dfrac{1}{{{2}^{10}}} \\
& =\dfrac{10\times 9\times 8\times 7\times 6!}{4!.6!}.\dfrac{1}{{{2}^{10}}} \\
& =\dfrac{10\times 9\times 8\times 7}{4\times 3\times 2\times 1}.\dfrac{1}{{{2}^{10}}} \\
& =\dfrac{105}{512} \\
\end{align}$
Hence the probability of getting exactly $6$ heads is $\dfrac{105}{512}$.
Now the probability of getting at least $6$ heads is
$\begin{align}
& \text{P}\left( \text{X}\ge \text{6} \right)=\text{P}\left( \text{X}=\text{6} \right)+\text{P}\left( \text{X}=7 \right)+\text{P}\left( \text{X}=8 \right)+\text{P}\left( \text{X}=9 \right)+\text{P}\left( \text{X}=10 \right) \\
& ={}^{10}{{\text{C}}_{6}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{7}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{8}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{9}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ \dfrac{10!}{6!\left( 10-6 \right)!}+\dfrac{10!}{7!\left( 10-7 \right)!}+\dfrac{10!}{8!\left( 10-8 \right)!}+\dfrac{10!}{9!\left( 10-9 \right)!}+\dfrac{10!}{10!\left( 10-10 \right)!} \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ 210+120+45+10+1 \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left( 386 \right) \\
& =\dfrac{193}{512} \\
\end{align}$
Hence the probability of getting at least $6$ heads is $\dfrac{193}{512}$
Now the probability of getting at most $6$ heads is
$\begin{align}
& \text{P}\left( \text{X}\le \text{6} \right)=\text{P}\left( \text{X}=\text{6} \right)+\text{P}\left( \text{X}=5 \right)+\text{P}\left( \text{X}=4 \right)+\text{P}\left( \text{X}=3 \right)+\text{P}\left( \text{X}=2 \right)+\text{P}\left( \text{X}=1 \right)+\text{P}\left( \text{X}=0 \right) \\
& ={}^{10}{{\text{C}}_{6}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{5}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{4}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{3}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{2}}{{\left( \dfrac{1}{2} \right)}^{10}}+\,{}^{10}{{\text{C}}_{1}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{0}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ \dfrac{10!}{6!\left( 10-6 \right)!}+\dfrac{10!}{5!\left( 10-5 \right)!}+\dfrac{10!}{4!\left( 10-4 \right)!}+\dfrac{10!}{3!\left( 10-3 \right)!}+\dfrac{10!}{2!\left( 10-2 \right)!}+\dfrac{10!}{1!\left( 10-1 \right)!}+\dfrac{10!}{0!\left( 10-0 \right)!} \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ 210+252+210+120+45+10+1 \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left( 848 \right) \\
& =\dfrac{53}{64} \\
\end{align}$
Hence the probability of getting at most $6$ heads is $\dfrac{53}{64}$.
Note: Please note the difference between the terms ‘At least’ and ‘At most’. Mathematically ‘At least’ is similar to ‘Greater than or equal to’ and ‘At most’ is similar to ‘Less than or equal to’. Please note another point that $0!=1!=1$. We can also find the value of $\text{P}\left( \text{X}\le \text{6} \right)$ as
\[\begin{align}
& \text{P}\left( \text{X}\le \text{6} \right)=1-\text{P}\left( \text{X6} \right) \\
& =1-\text{P}\left( \text{X}=7 \right)-\text{P}\left( \text{X}=8 \right)-\text{P}\left( \text{X}=9 \right)-\text{P}\left( \text{X}=10 \right) \\
& =1-{}^{10}{{\text{C}}_{7}}{{\left( \dfrac{1}{2} \right)}^{10}}-{}^{10}{{\text{C}}_{8}}{{\left( \dfrac{1}{2} \right)}^{10}}-{}^{10}{{\text{C}}_{9}}{{\left( \dfrac{1}{2} \right)}^{10}}-{}^{10}{{\text{C}}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
& =1-{{\left( \dfrac{1}{2} \right)}^{10}}\left[ \dfrac{10!}{7!\left( 10-7 \right)!}+\dfrac{10!}{8!\left( 10-8 \right)!}+\dfrac{10!}{9!\left( 10-9 \right)!}+\dfrac{10!}{10!\left( 10-10 \right)!} \right] \\
& =1-{{\left( \dfrac{1}{2} \right)}^{10}}\left( 120+45+10+1 \right) \\
& =1-{{\left( \dfrac{1}{2} \right)}^{10}}\left( 176 \right) \\
& =1-\dfrac{11}{64} \\
& =\dfrac{53}{64} \\
\end{align}\]
From both the methods we get the same answer.
Complete step-by-step solution
Given that, A fair coin is tossed $10$ times, then
$n=10$
Let the number heads appear as $x$.
If coin toss is Bernoulli trial, then the binomial distribution for the variable $x$ I given by
$\text{P}\left( \text{X}=x \right)={}^{n}{{\text{C}}_{x}}{{q}^{n-x}}{{p}^{x}}$
Where
$p$ is the probability of getting head.
$q$ is the probability of not getting head.
We know that when we tossed a coin the probability of getting head is $\dfrac{1}{2}$, then
$p=\dfrac{1}{2}$
We know that sum of probabilities is equal to $1$, then
$p+q=1$
$\Rightarrow q=1-\dfrac{1}{2}=\dfrac{1}{2}$
Hence the distribution is
$\begin{align}
& \text{P}\left( \text{X}=x \right)={}^{10}{{\text{C}}_{x}}{{\left( \dfrac{1}{2} \right)}^{10-x}}{{\left( \dfrac{1}{2} \right)}^{x}} \\
& ={}^{10}{{\text{C}}_{x}}{{\left( \dfrac{1}{2} \right)}^{10-x+x}} \\
& ={}^{10}{{\text{C}}_{x}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
\end{align}$
Now the probability of getting exactly $6$ heads is
$\text{P}\left( \text{X}=6 \right)={}^{10}{{\text{C}}_{6}}{{\left( \dfrac{1}{2} \right)}^{10}}$
We know that ${}^{n}{{\text{C}}_{r}}=\dfrac{n!}{\left( n-r \right)!.r!}$, then
$\begin{align}
& \text{P}\left( \text{X}=6 \right)=\dfrac{10!}{\left( 10-6 \right)!6!}.\dfrac{1}{{{2}^{10}}} \\
& =\dfrac{10\times 9\times 8\times 7\times 6!}{4!.6!}.\dfrac{1}{{{2}^{10}}} \\
& =\dfrac{10\times 9\times 8\times 7}{4\times 3\times 2\times 1}.\dfrac{1}{{{2}^{10}}} \\
& =\dfrac{105}{512} \\
\end{align}$
Hence the probability of getting exactly $6$ heads is $\dfrac{105}{512}$.
Now the probability of getting at least $6$ heads is
$\begin{align}
& \text{P}\left( \text{X}\ge \text{6} \right)=\text{P}\left( \text{X}=\text{6} \right)+\text{P}\left( \text{X}=7 \right)+\text{P}\left( \text{X}=8 \right)+\text{P}\left( \text{X}=9 \right)+\text{P}\left( \text{X}=10 \right) \\
& ={}^{10}{{\text{C}}_{6}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{7}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{8}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{9}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ \dfrac{10!}{6!\left( 10-6 \right)!}+\dfrac{10!}{7!\left( 10-7 \right)!}+\dfrac{10!}{8!\left( 10-8 \right)!}+\dfrac{10!}{9!\left( 10-9 \right)!}+\dfrac{10!}{10!\left( 10-10 \right)!} \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ 210+120+45+10+1 \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left( 386 \right) \\
& =\dfrac{193}{512} \\
\end{align}$
Hence the probability of getting at least $6$ heads is $\dfrac{193}{512}$
Now the probability of getting at most $6$ heads is
$\begin{align}
& \text{P}\left( \text{X}\le \text{6} \right)=\text{P}\left( \text{X}=\text{6} \right)+\text{P}\left( \text{X}=5 \right)+\text{P}\left( \text{X}=4 \right)+\text{P}\left( \text{X}=3 \right)+\text{P}\left( \text{X}=2 \right)+\text{P}\left( \text{X}=1 \right)+\text{P}\left( \text{X}=0 \right) \\
& ={}^{10}{{\text{C}}_{6}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{5}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{4}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{3}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{2}}{{\left( \dfrac{1}{2} \right)}^{10}}+\,{}^{10}{{\text{C}}_{1}}{{\left( \dfrac{1}{2} \right)}^{10}}+{}^{10}{{\text{C}}_{0}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ \dfrac{10!}{6!\left( 10-6 \right)!}+\dfrac{10!}{5!\left( 10-5 \right)!}+\dfrac{10!}{4!\left( 10-4 \right)!}+\dfrac{10!}{3!\left( 10-3 \right)!}+\dfrac{10!}{2!\left( 10-2 \right)!}+\dfrac{10!}{1!\left( 10-1 \right)!}+\dfrac{10!}{0!\left( 10-0 \right)!} \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left[ 210+252+210+120+45+10+1 \right] \\
& ={{\left( \dfrac{1}{2} \right)}^{10}}\left( 848 \right) \\
& =\dfrac{53}{64} \\
\end{align}$
Hence the probability of getting at most $6$ heads is $\dfrac{53}{64}$.
Note: Please note the difference between the terms ‘At least’ and ‘At most’. Mathematically ‘At least’ is similar to ‘Greater than or equal to’ and ‘At most’ is similar to ‘Less than or equal to’. Please note another point that $0!=1!=1$. We can also find the value of $\text{P}\left( \text{X}\le \text{6} \right)$ as
\[\begin{align}
& \text{P}\left( \text{X}\le \text{6} \right)=1-\text{P}\left( \text{X6} \right) \\
& =1-\text{P}\left( \text{X}=7 \right)-\text{P}\left( \text{X}=8 \right)-\text{P}\left( \text{X}=9 \right)-\text{P}\left( \text{X}=10 \right) \\
& =1-{}^{10}{{\text{C}}_{7}}{{\left( \dfrac{1}{2} \right)}^{10}}-{}^{10}{{\text{C}}_{8}}{{\left( \dfrac{1}{2} \right)}^{10}}-{}^{10}{{\text{C}}_{9}}{{\left( \dfrac{1}{2} \right)}^{10}}-{}^{10}{{\text{C}}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}} \\
& =1-{{\left( \dfrac{1}{2} \right)}^{10}}\left[ \dfrac{10!}{7!\left( 10-7 \right)!}+\dfrac{10!}{8!\left( 10-8 \right)!}+\dfrac{10!}{9!\left( 10-9 \right)!}+\dfrac{10!}{10!\left( 10-10 \right)!} \right] \\
& =1-{{\left( \dfrac{1}{2} \right)}^{10}}\left( 120+45+10+1 \right) \\
& =1-{{\left( \dfrac{1}{2} \right)}^{10}}\left( 176 \right) \\
& =1-\dfrac{11}{64} \\
& =\dfrac{53}{64} \\
\end{align}\]
From both the methods we get the same answer.
Recently Updated Pages
Find the zeros of the following quadratic polynomials class 10 maths CBSE

what is the coefficient of x2 in each of the following class 10 maths CBSE

The halide ore of sodium is called as A Horn salt B class 10 chemistry CBSE

Is a dependent pair of linear equations always consistent class 10 maths CBSE

The total value with GST of a remotecontrolled toy-class-10-maths-CBSE

Major difference between phloem of angiosperms and class 10 biology CBSE

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

