
If a die rolled once, then find the probability of getting an odd prime number.
Answer
584.1k+ views
Hint: In this question it is given that if a die rolled once, then we have to find the probability of getting an odd prime number. So for this we need to know the expression of probability, which is,
Probability(P)=$$\dfrac{\text{Number of favourable outcomes} }{\text{Total number of outcomes} }$$.....(1)
So from the given data we have to find the all possible outcomes and the number of possible outcomes.
Complete step-by-step solution:
As we know that a die is a six-sided cube with the numbers 1-6 placed on the faces.
So from here we can say that if we throw a die then among these six faces one face must occur.
Therefore, Total number of possible outcomes = 6
Now the favourable outcome is to get an odd prime number, so between 1 to 6 the odd primes are 3 and 5, i.e, only two.
So the number of favourable outcomes =2
Therefore, we can say that,
$$\text{Probability} \left( P\right) =\dfrac{\text{Number of favourable outcomes} }{\text{Total number of possible outcomes} }$$
$$=\dfrac{2}{6}$$
$$=\dfrac{1}{3}$$
So we can say that the probability of getting an odd prime number is $$\dfrac{1}{3}$$.
Note: To solve this type of question you need to know that in mathematics, prime numbers are whole numbers which are greater than 1, that have only two factors, 1 and the number itself and they are divisible only by the number 1 or itself.
For example: 2, 3, 5, 7 and 11 are the first few prime numbers.
Also you need to have the basic idea about odd numbers, so odd numbers are those numbers which are not divisible by 2 or we can say that when divided by 2, leave a remainder 1.
For example: 1, 3, 5, 7, …...
Probability(P)=$$\dfrac{\text{Number of favourable outcomes} }{\text{Total number of outcomes} }$$.....(1)
So from the given data we have to find the all possible outcomes and the number of possible outcomes.
Complete step-by-step solution:
As we know that a die is a six-sided cube with the numbers 1-6 placed on the faces.
So from here we can say that if we throw a die then among these six faces one face must occur.
Therefore, Total number of possible outcomes = 6
Now the favourable outcome is to get an odd prime number, so between 1 to 6 the odd primes are 3 and 5, i.e, only two.
So the number of favourable outcomes =2
Therefore, we can say that,
$$\text{Probability} \left( P\right) =\dfrac{\text{Number of favourable outcomes} }{\text{Total number of possible outcomes} }$$
$$=\dfrac{2}{6}$$
$$=\dfrac{1}{3}$$
So we can say that the probability of getting an odd prime number is $$\dfrac{1}{3}$$.
Note: To solve this type of question you need to know that in mathematics, prime numbers are whole numbers which are greater than 1, that have only two factors, 1 and the number itself and they are divisible only by the number 1 or itself.
For example: 2, 3, 5, 7 and 11 are the first few prime numbers.
Also you need to have the basic idea about odd numbers, so odd numbers are those numbers which are not divisible by 2 or we can say that when divided by 2, leave a remainder 1.
For example: 1, 3, 5, 7, …...
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

