
If \[a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\] and \[b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}\] , find the value of $\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$
Answer
575.1k+ views
Hint: First we will have to rationalise the denominators of both a and b. Note that a and b are conjugate surds. Therefore find \[(a + b),{\text{ }}(a - b)\] and \[ab\]. Now write $\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$as $\dfrac{{{{\left( {a + b} \right)}^2} - ab}}{{{{\left( {a - b} \right)}^2} + ab}}$ and substitute the values of \[(a + b),{\text{ }}(a - b)\] and \[ab\], on solving we get our answer.
Complete step by step answer:
Given, \[a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\] and \[b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}\]
Therefore, \[ab = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} \times \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }} = 1\]
Now we will have to rationalize the denominators of both a and b first.
For this, we multiply the denominator with its conjugate surd.
\[a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\]
Multiplying both the numerator and denominator with \[\sqrt 5 + \sqrt 2 \], we get
\[ \Rightarrow a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} \times \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}\]
\[ \Rightarrow a = \dfrac{{{{\left( {\sqrt 5 + \sqrt 2 } \right)}^2}}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}\]
Using, $(a + b)(a - b) = {a^2} - {b^2}$, we get
\[ \Rightarrow a = \dfrac{{{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} + 2 \times \sqrt 5 \times \sqrt 2 }}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\]
On simplification we get,
\[ \Rightarrow a = \dfrac{{5 + 2 + 2\sqrt {10} }}{{5 - 2}}\]
On addition we get,
\[ \Rightarrow a = \dfrac{{7 + 2\sqrt {10} }}{3}\]
And \[b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}\]
Multiplying both the numerator and denominator with \[\sqrt 5 - \sqrt 2 \],
\[ \Rightarrow b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }} \times \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\]
\[ \Rightarrow b = \dfrac{{{{\left( {\sqrt 5 - \sqrt 2 } \right)}^2}}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}\]
Using, $(a + b)(a - b) = {a^2} - {b^2}$, we get
\[ \Rightarrow b = \dfrac{{{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} - 2 \times \sqrt 5 \times \sqrt 2 }}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\]
On simplification we get,
\[ \Rightarrow b = \dfrac{{5 + 2 - 2\sqrt {10} }}{{5 - 2}}\]
On addition we get,
\[ \Rightarrow b = \dfrac{{7 - 2\sqrt {10} }}{3}\]
Now, calculating \[a + b\],
We get,
$a + b = \dfrac{{7 + 2\sqrt {10} }}{3} + \dfrac{{7 - 2\sqrt {10} }}{3}$
On simplification we get,
$ \Rightarrow a + b = \dfrac{{7 + 2\sqrt {10} + 7 - 2\sqrt {10} }}{3}$
$ \Rightarrow a + b = \dfrac{{14}}{3}$
And,
On calculating \[a - b\],
We get,
$a - b = \dfrac{{7 + 2\sqrt {10} }}{3} - \dfrac{{7 - 2\sqrt {10} }}{3}$
On simplification we get,
$ \Rightarrow a - b = \dfrac{{7 + 2\sqrt {10} - 7 + 2\sqrt {10} }}{3}$
$ \Rightarrow a - b = \dfrac{{4\sqrt {10} }}{3}$
Now we have to find the value of $\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$
Therefore,
$\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$
Add and subtract \[ab\], from numerator and denominator, we get
$ = \dfrac{{{a^2} + 2ab + {b^2} - ab}}{{{a^2} - 2ab + {b^2} + ab}}$
On reframing we get,
$ = \dfrac{{{{\left( {a + b} \right)}^2} - ab}}{{{{\left( {a - b} \right)}^2} + ab}}$
On Substituting the values of \[(a + b),{\text{ }}(a - b)\] and \[ab\], we get
$ = \dfrac{{{{\left( {\dfrac{{14}}{3}} \right)}^2} - 1}}{{{{\left( {\dfrac{{4\sqrt {10} }}{3}} \right)}^2} + 1}}$
On simplification we get,
$ = \dfrac{{\dfrac{{196}}{9} - 1}}{{\dfrac{{160}}{9} + 1}}$
On taking LCM we get,
$ = \dfrac{{196 - 9}}{{160 + 9}}$
On simplification we get,
$ = \dfrac{{187}}{{169}}$
Therefore, the value of $\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$ is $\dfrac{{187}}{{169}}$.
Note: To rationalize the denominator of a fraction, we have to multiply both the numerator and the denominator with the conjugate surd of the denominator. For example, to rationalise the denominator of the fraction $\dfrac{{a + \sqrt b }}{{c + \sqrt d }}$ , we will multiply both the numerator and the denominator with $c - \sqrt d $ .
$ \Rightarrow \dfrac{{a + \sqrt b }}{{c + \sqrt d }} = \dfrac{{a + \sqrt b }}{{c + \sqrt d }} \times \dfrac{{c - \sqrt d }}{{c - \sqrt d }} = \dfrac{{\left( {a + \sqrt b } \right)\left( {c - \sqrt d } \right)}}{{{c^2} - d}}$ [since $(a + b)(a - b) = {a^2} - {b^2}$ ]
Complete step by step answer:
Given, \[a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\] and \[b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}\]
Therefore, \[ab = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} \times \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }} = 1\]
Now we will have to rationalize the denominators of both a and b first.
For this, we multiply the denominator with its conjugate surd.
\[a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\]
Multiplying both the numerator and denominator with \[\sqrt 5 + \sqrt 2 \], we get
\[ \Rightarrow a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} \times \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}\]
\[ \Rightarrow a = \dfrac{{{{\left( {\sqrt 5 + \sqrt 2 } \right)}^2}}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}\]
Using, $(a + b)(a - b) = {a^2} - {b^2}$, we get
\[ \Rightarrow a = \dfrac{{{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} + 2 \times \sqrt 5 \times \sqrt 2 }}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\]
On simplification we get,
\[ \Rightarrow a = \dfrac{{5 + 2 + 2\sqrt {10} }}{{5 - 2}}\]
On addition we get,
\[ \Rightarrow a = \dfrac{{7 + 2\sqrt {10} }}{3}\]
And \[b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}\]
Multiplying both the numerator and denominator with \[\sqrt 5 - \sqrt 2 \],
\[ \Rightarrow b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }} \times \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\]
\[ \Rightarrow b = \dfrac{{{{\left( {\sqrt 5 - \sqrt 2 } \right)}^2}}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}\]
Using, $(a + b)(a - b) = {a^2} - {b^2}$, we get
\[ \Rightarrow b = \dfrac{{{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} - 2 \times \sqrt 5 \times \sqrt 2 }}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\]
On simplification we get,
\[ \Rightarrow b = \dfrac{{5 + 2 - 2\sqrt {10} }}{{5 - 2}}\]
On addition we get,
\[ \Rightarrow b = \dfrac{{7 - 2\sqrt {10} }}{3}\]
Now, calculating \[a + b\],
We get,
$a + b = \dfrac{{7 + 2\sqrt {10} }}{3} + \dfrac{{7 - 2\sqrt {10} }}{3}$
On simplification we get,
$ \Rightarrow a + b = \dfrac{{7 + 2\sqrt {10} + 7 - 2\sqrt {10} }}{3}$
$ \Rightarrow a + b = \dfrac{{14}}{3}$
And,
On calculating \[a - b\],
We get,
$a - b = \dfrac{{7 + 2\sqrt {10} }}{3} - \dfrac{{7 - 2\sqrt {10} }}{3}$
On simplification we get,
$ \Rightarrow a - b = \dfrac{{7 + 2\sqrt {10} - 7 + 2\sqrt {10} }}{3}$
$ \Rightarrow a - b = \dfrac{{4\sqrt {10} }}{3}$
Now we have to find the value of $\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$
Therefore,
$\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$
Add and subtract \[ab\], from numerator and denominator, we get
$ = \dfrac{{{a^2} + 2ab + {b^2} - ab}}{{{a^2} - 2ab + {b^2} + ab}}$
On reframing we get,
$ = \dfrac{{{{\left( {a + b} \right)}^2} - ab}}{{{{\left( {a - b} \right)}^2} + ab}}$
On Substituting the values of \[(a + b),{\text{ }}(a - b)\] and \[ab\], we get
$ = \dfrac{{{{\left( {\dfrac{{14}}{3}} \right)}^2} - 1}}{{{{\left( {\dfrac{{4\sqrt {10} }}{3}} \right)}^2} + 1}}$
On simplification we get,
$ = \dfrac{{\dfrac{{196}}{9} - 1}}{{\dfrac{{160}}{9} + 1}}$
On taking LCM we get,
$ = \dfrac{{196 - 9}}{{160 + 9}}$
On simplification we get,
$ = \dfrac{{187}}{{169}}$
Therefore, the value of $\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}$ is $\dfrac{{187}}{{169}}$.
Note: To rationalize the denominator of a fraction, we have to multiply both the numerator and the denominator with the conjugate surd of the denominator. For example, to rationalise the denominator of the fraction $\dfrac{{a + \sqrt b }}{{c + \sqrt d }}$ , we will multiply both the numerator and the denominator with $c - \sqrt d $ .
$ \Rightarrow \dfrac{{a + \sqrt b }}{{c + \sqrt d }} = \dfrac{{a + \sqrt b }}{{c + \sqrt d }} \times \dfrac{{c - \sqrt d }}{{c - \sqrt d }} = \dfrac{{\left( {a + \sqrt b } \right)\left( {c - \sqrt d } \right)}}{{{c^2} - d}}$ [since $(a + b)(a - b) = {a^2} - {b^2}$ ]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

