
If a determinant is given in terms of x as \[f\left( x \right)=\left| \left( \begin{matrix}
1 & x & x+1 \\
2x & x\left( x-1 \right) & \left( x+1 \right)x \\
3x\left( x-1 \right) & x\left( x-1 \right)\left( x-2 \right) & \left( x+1 \right)x\left( x-1 \right) \\
\end{matrix} \right) \right|\]
then f(100) is equal to:
(a) 0
(b) 1
(c) 100
(d) -100
Answer
602.7k+ views
Hint: In this question, we first need to look into the definitions of matrices and determinants. Then by using the formula of third order determinant we need to find the value of f(x) and substitute 100 in the respective function obtained.
Complete step-by-step solution -
Let us first look into some of the basic definitions of matrices and determinants.
MATRIX: A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as
\[A=\left( \begin{matrix}
{{a}_{11}} & \ldots & {{a}_{1n}} \\
\vdots & \ddots & \vdots \\
{{a}_{m1}} & \cdots & {{a}_{mn}} \\
\end{matrix} \right)\]
Matrix is enclosed by ( ) or [ ]
Compact from the above matrix is represented by\[{{\left[ {{a}_{ij}} \right]}_{m\times n}}\] or \[A=\left[ {{a}_{ij}} \right]\].
ELEMENT OF A MATRIX: The numbers a11, a12, etc., in the above matrix are known as the elements of the matrix, generally represented as\[{{a}_{ij}}\], which denotes element in the
\[i\text{th row and }j\text{th column}\text{.}\]
ORDER OF A MATRIX: In above matrix has m rows and n columns, then A is of order
\[m\times n\].
TYPES OF MATRICES:
Principal Diagonal of a Matrix
EQUAL MATRICES: Two matrices A and B are said to be equal, if both are having the same order and corresponding elements of both the matrices are equal.
DETERMINANT: Every square matrix A is associated with a number, called its determinant and it is denoted by \[\det \left( A \right)\] or \[\left| A \right|\].
Only square matrices have determinants. The matrices which are not square do not have determinants.
THIRD ORDER DETERMINANT:
If \[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\], then
\[\left| A \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)-{{a}_{12}}\left( {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} \right)+{{a}_{13}}\left( {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \right)\]
Now, by comparing the given function with the above formula we get,
\[\Rightarrow f\left( x \right)=\left| \left( \begin{matrix}
1 & x & x+1 \\
2x & x\left( x-1 \right) & \left( x+1 \right)x \\
3x\left( x-1 \right) & x\left( x-1 \right)\left( x-2 \right) & \left( x+1 \right)x\left( x-1 \right) \\
\end{matrix} \right) \right|\]
\[\begin{align}
& \Rightarrow f\left( x \right)=1\left( x\left( x-1 \right)\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)xx\left( x-1 \right)\left( x-2 \right) \right) \\
& \text{ }-x\left( 2x\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)x3x\left( x-1 \right) \right) \\
& \text{ }+\left( x+1 \right)\left( 2xx\left( x-1 \right)\left( x-2 \right)-x\left( x-1 \right)3x\left( x-1 \right) \right) \\
\end{align}\]
Now, considering the each part of the above equation by assuming them as A, B, C and then simplify them separately we get,
\[\Rightarrow f\left( x \right)=A+B+C\]
\[\Rightarrow A=1\left( x\left( x-1 \right)\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)xx\left( x-1 \right)\left( x-2 \right) \right)\]
Let us take out the common terms then we get,
\[\begin{align}
& \Rightarrow A=x\left( x-1 \right)\left( x+1 \right)x\left( x-1-x+2 \right) \\
& \Rightarrow A=x\left( x-1 \right)\left( x+1 \right) \\
& \therefore A={{x}^{2}}\left( {{x}^{2}}-1 \right) \\
\end{align}\]
\[\Rightarrow B=-x\left( 2x\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)x3x\left( x-1 \right) \right)\]
\[\begin{align}
& \Rightarrow B=-x\cdot x\left( x+1 \right)x\left( x-1 \right)\left( 2-3 \right) \\
& \Rightarrow B=x\cdot x\left( x+1 \right)x\left( x-1 \right) \\
& \therefore B=x\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right) \\
\end{align}\]
\[\Rightarrow C\text{=}\left( x+1 \right)\left( 2xx\left( x-1 \right)\left( x-2 \right)-x\left( x-1 \right)3x\left( x-1 \right) \right)\]
\[\begin{align}
& \Rightarrow C\text{=}\left( x+1 \right)xx\left( x-1 \right)\left( 2\left( x-2 \right)-3\left( x-1 \right) \right) \\
& \Rightarrow C\text{=}\left( x+1 \right)xx\left( x-1 \right)\left( 2x-4-3x+3 \right) \\
& \Rightarrow C\text{=}\left( x+1 \right)xx\left( x-1 \right)\left( -x-1 \right) \\
& \therefore C=-\left( x+1 \right)\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right) \\
\end{align}\]
\[\Rightarrow f\left( x \right)={{x}^{2}}\left( {{x}^{2}}-1 \right)+x\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right)-\left( x+1 \right)\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right)\]
\[\begin{align}
& \Rightarrow f\left( x \right)={{x}^{2}}\left( {{x}^{2}}-1 \right)\left[ 1+x-\left( x+1 \right) \right] \\
& \Rightarrow f\left( x \right)={{x}^{2}}\left( {{x}^{2}}-1 \right)\cdot 0 \\
& \therefore f\left( x \right)=0 \\
\end{align}\]
\[\therefore f\left( 100 \right)=0\]
Hence, the correct option is (a).
Note: Instead of expanding every term and then multiplying to find the third order determinant we can also find it by using the second order determinant while expanding and then find its value there itself which also gives the same result.
\[\left| A \right|={{a}_{11}}\left| \left( \begin{matrix}
{{a}_{22}} & {{a}_{23}} \\
{{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right) \right|-{{a}_{12}}\left| \left( \begin{matrix}
{{a}_{21}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{33}} \\
\end{matrix} \right) \right|+{{a}_{13}}\left| \left( \begin{matrix}
{{a}_{21}} & {{a}_{22}} \\
{{a}_{31}} & {{a}_{32}} \\
\end{matrix} \right) \right|\]
While expanding the term we need to be careful when we take out the common terms and the addition or subtraction of the terms inside. Because neglecting any of the terms or any of the signs changes the function completely and then the result.
Complete step-by-step solution -
Let us first look into some of the basic definitions of matrices and determinants.
MATRIX: A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as
\[A=\left( \begin{matrix}
{{a}_{11}} & \ldots & {{a}_{1n}} \\
\vdots & \ddots & \vdots \\
{{a}_{m1}} & \cdots & {{a}_{mn}} \\
\end{matrix} \right)\]
Matrix is enclosed by ( ) or [ ]
Compact from the above matrix is represented by\[{{\left[ {{a}_{ij}} \right]}_{m\times n}}\] or \[A=\left[ {{a}_{ij}} \right]\].
ELEMENT OF A MATRIX: The numbers a11, a12, etc., in the above matrix are known as the elements of the matrix, generally represented as\[{{a}_{ij}}\], which denotes element in the
\[i\text{th row and }j\text{th column}\text{.}\]
ORDER OF A MATRIX: In above matrix has m rows and n columns, then A is of order
\[m\times n\].
TYPES OF MATRICES:
Row Matrix
Column Matrix
Rectangular Matrix
Horizontal Matrix
Vertical Matrix
Null / Zero Matrix
Square Matrix
Diagonal Matrix
Scalar Matrix
Unit / Identity Matrix
Upper Triangular Matrix
Lower Triangular Matrix
Sub Matrix
Equal Matrices
Principal Diagonal of a Matrix
Singular Matrix
EQUAL MATRICES: Two matrices A and B are said to be equal, if both are having the same order and corresponding elements of both the matrices are equal.
DETERMINANT: Every square matrix A is associated with a number, called its determinant and it is denoted by \[\det \left( A \right)\] or \[\left| A \right|\].
Only square matrices have determinants. The matrices which are not square do not have determinants.
THIRD ORDER DETERMINANT:
If \[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\], then
\[\left| A \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)-{{a}_{12}}\left( {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} \right)+{{a}_{13}}\left( {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \right)\]
Now, by comparing the given function with the above formula we get,
\[\Rightarrow f\left( x \right)=\left| \left( \begin{matrix}
1 & x & x+1 \\
2x & x\left( x-1 \right) & \left( x+1 \right)x \\
3x\left( x-1 \right) & x\left( x-1 \right)\left( x-2 \right) & \left( x+1 \right)x\left( x-1 \right) \\
\end{matrix} \right) \right|\]
\[\begin{align}
& \Rightarrow f\left( x \right)=1\left( x\left( x-1 \right)\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)xx\left( x-1 \right)\left( x-2 \right) \right) \\
& \text{ }-x\left( 2x\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)x3x\left( x-1 \right) \right) \\
& \text{ }+\left( x+1 \right)\left( 2xx\left( x-1 \right)\left( x-2 \right)-x\left( x-1 \right)3x\left( x-1 \right) \right) \\
\end{align}\]
Now, considering the each part of the above equation by assuming them as A, B, C and then simplify them separately we get,
\[\Rightarrow f\left( x \right)=A+B+C\]
\[\Rightarrow A=1\left( x\left( x-1 \right)\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)xx\left( x-1 \right)\left( x-2 \right) \right)\]
Let us take out the common terms then we get,
\[\begin{align}
& \Rightarrow A=x\left( x-1 \right)\left( x+1 \right)x\left( x-1-x+2 \right) \\
& \Rightarrow A=x\left( x-1 \right)\left( x+1 \right) \\
& \therefore A={{x}^{2}}\left( {{x}^{2}}-1 \right) \\
\end{align}\]
\[\Rightarrow B=-x\left( 2x\left( x+1 \right)x\left( x-1 \right)-\left( x+1 \right)x3x\left( x-1 \right) \right)\]
\[\begin{align}
& \Rightarrow B=-x\cdot x\left( x+1 \right)x\left( x-1 \right)\left( 2-3 \right) \\
& \Rightarrow B=x\cdot x\left( x+1 \right)x\left( x-1 \right) \\
& \therefore B=x\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right) \\
\end{align}\]
\[\Rightarrow C\text{=}\left( x+1 \right)\left( 2xx\left( x-1 \right)\left( x-2 \right)-x\left( x-1 \right)3x\left( x-1 \right) \right)\]
\[\begin{align}
& \Rightarrow C\text{=}\left( x+1 \right)xx\left( x-1 \right)\left( 2\left( x-2 \right)-3\left( x-1 \right) \right) \\
& \Rightarrow C\text{=}\left( x+1 \right)xx\left( x-1 \right)\left( 2x-4-3x+3 \right) \\
& \Rightarrow C\text{=}\left( x+1 \right)xx\left( x-1 \right)\left( -x-1 \right) \\
& \therefore C=-\left( x+1 \right)\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right) \\
\end{align}\]
\[\Rightarrow f\left( x \right)={{x}^{2}}\left( {{x}^{2}}-1 \right)+x\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right)-\left( x+1 \right)\cdot {{x}^{2}}\left( {{x}^{2}}-1 \right)\]
\[\begin{align}
& \Rightarrow f\left( x \right)={{x}^{2}}\left( {{x}^{2}}-1 \right)\left[ 1+x-\left( x+1 \right) \right] \\
& \Rightarrow f\left( x \right)={{x}^{2}}\left( {{x}^{2}}-1 \right)\cdot 0 \\
& \therefore f\left( x \right)=0 \\
\end{align}\]
\[\therefore f\left( 100 \right)=0\]
Hence, the correct option is (a).
Note: Instead of expanding every term and then multiplying to find the third order determinant we can also find it by using the second order determinant while expanding and then find its value there itself which also gives the same result.
\[\left| A \right|={{a}_{11}}\left| \left( \begin{matrix}
{{a}_{22}} & {{a}_{23}} \\
{{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right) \right|-{{a}_{12}}\left| \left( \begin{matrix}
{{a}_{21}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{33}} \\
\end{matrix} \right) \right|+{{a}_{13}}\left| \left( \begin{matrix}
{{a}_{21}} & {{a}_{22}} \\
{{a}_{31}} & {{a}_{32}} \\
\end{matrix} \right) \right|\]
While expanding the term we need to be careful when we take out the common terms and the addition or subtraction of the terms inside. Because neglecting any of the terms or any of the signs changes the function completely and then the result.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

