
If a chord, which is not a tangent, of the parabola \[{{y}^{2}}=16x\] has the equation \[2x+y=p\], and midpoint \[\left( h,k \right)\], then which of the following is (are) possible value(s) of p, h and k?
(a) \[p=-1\], $h=1$, $k=-3$.
(b) $p=5$, $h=4$, $k=-3$,
(c) $p=-2$, $h=2$, $k=-4$,
(d) $p=2$, $h=3$, $k=-4$.
Answer
568.8k+ views
Hint: We start solving the problem by finding the equation of the chord of the parabola \[{{y}^{2}}=16x\] having midpoint \[\left( h,k \right)\]. We then equate the obtained equation of chord with the given equation of chord \[2x+y=p\]. We then take the ratios of coefficients of x and y and the constants of respective lines will be equal to each other. We then solve these obtained ratios to get the required answer.
Complete step-by-step solution:
Let us first draw the given information:
Consider the end points of chord having midpoint at \[\left( h,k \right)\]of the parabola \[{{y}^{2}}=16x\] or \[{{y}^{2}}=4\times 4\times x\] are \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]. We know the section formula the midpoint of the line joining \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]. Now we see that the coordinates \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] and \[\left( h,k \right)\] are identical. Therefore, equating the ordinates we will get
\[\Rightarrow k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\].
\[\Rightarrow 2k={{y}_{2}}+{{y}_{1}}\]--- (1).
As we know that the points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] must lie on the parabola \[{{y}^{2}}=16x\] then the coordinates must satisfy the equation of parabola, hence we obtain,
\[{{y}_{1}}^{2}=16{{x}_{1}}\] ---(2) and \[{{y}_{2}}^{2}=16{{x}_{2}}\] ---(3).
Subtracting Eq. (2) from eq. (3) we will get,
\[\Rightarrow {{y}_{2}}^{2}-{{y}_{1}}^{2}=16\left( {{x}_{2}}-{{x}_{1}} \right)\].
\[\Rightarrow \left( {{y}_{2}}+{{y}_{1}} \right)\left( {{y}_{2}}-{{y}_{1}} \right)=16\left( {{x}_{2}}-{{x}_{1}} \right)\] --- (4).
Now substituting the value of eq. (1) in eq. (4), we will get
\[\Rightarrow 2k\left( {{y}_{2}}-{{y}_{1}} \right)=16\left( {{x}_{2}}-{{x}_{1}} \right)\].
\[\Rightarrow \dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}=\dfrac{8}{k}\] ---(5).
Here we got the slope of the chord joining \[\left( {{x}_{1}},{{y}_{1}} \right)\]and. is\[\dfrac{8}{k}\]. Now the equation of the line (the chord) passing through the point \[\left( h,k \right)\] and having slope \[\dfrac{8}{k}\]is given by,
\[\Rightarrow \left( y-k \right)=\dfrac{8}{k}\left( x-h \right)\].
\[\Rightarrow 8x-ky=8h-{{k}^{2}}\] ---(6).
But we are given that the equation of the chord is \[2x+y=p\]---(7).
Since line eq. (6) and eq. (7) are identical, then the ratio of the respective coefficients must be equal therefore we will get
\[\Rightarrow \dfrac{8}{2}=\dfrac{-k}{1}=\dfrac{8h-{{k}^{2}}}{p}\].
\[\Rightarrow 4=-k=\dfrac{8h-{{k}^{2}}}{p}\].
\[\Rightarrow k=-4\], \[8h-{{k}^{2}}=4p\].
\[\Rightarrow k=-4\], \[8h-16=4p\]---(8).
We can see that the options (c) and (d) have $k=-4$. So, let us substitute the values of h and k in the equation to get the correct options.
Let us substitute option (c) \[p=-2\], $h=2$, $k=-4$ in equation (8) to verify them.
So, we get $8\left( 2 \right)-16=4\left( -2 \right)$.
$\Rightarrow 0=-8$, which is a contradiction.
So, option (c) is not correct.
Let us substitute option (d) \[p=2\], $h=3$, $k=-4$ in equation (8) to verify them.
So, we get $8\left( 3 \right)-16=4\left( 2 \right)$.
$\Rightarrow 8=8$, which is true.
So, option (d) is correct.
$\therefore$ The correct option for the given problem is (d).
Note: Alternatively, we can solve the problem by using the formula of the chord of the parabola \[{{y}^{2}}=4ax\] having midpoint $\left( {{x}_{1}},{{y}_{1}} \right)$ is \[y{{y}_{1}}-4ax={{y}_{1}}^{2}-4a{{x}_{1}}\]. We should not make calculation mistakes while solving this problem. We can also use the parametric points of the parabola $\left( a{{t}^{2}},2at \right)$ to solve this problem, but this increases one more variable which may lead us to confusion.
Complete step-by-step solution:
Let us first draw the given information:
Consider the end points of chord having midpoint at \[\left( h,k \right)\]of the parabola \[{{y}^{2}}=16x\] or \[{{y}^{2}}=4\times 4\times x\] are \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]. We know the section formula the midpoint of the line joining \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]. Now we see that the coordinates \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] and \[\left( h,k \right)\] are identical. Therefore, equating the ordinates we will get
\[\Rightarrow k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\].
\[\Rightarrow 2k={{y}_{2}}+{{y}_{1}}\]--- (1).
As we know that the points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] must lie on the parabola \[{{y}^{2}}=16x\] then the coordinates must satisfy the equation of parabola, hence we obtain,
\[{{y}_{1}}^{2}=16{{x}_{1}}\] ---(2) and \[{{y}_{2}}^{2}=16{{x}_{2}}\] ---(3).
Subtracting Eq. (2) from eq. (3) we will get,
\[\Rightarrow {{y}_{2}}^{2}-{{y}_{1}}^{2}=16\left( {{x}_{2}}-{{x}_{1}} \right)\].
\[\Rightarrow \left( {{y}_{2}}+{{y}_{1}} \right)\left( {{y}_{2}}-{{y}_{1}} \right)=16\left( {{x}_{2}}-{{x}_{1}} \right)\] --- (4).
Now substituting the value of eq. (1) in eq. (4), we will get
\[\Rightarrow 2k\left( {{y}_{2}}-{{y}_{1}} \right)=16\left( {{x}_{2}}-{{x}_{1}} \right)\].
\[\Rightarrow \dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}=\dfrac{8}{k}\] ---(5).
Here we got the slope of the chord joining \[\left( {{x}_{1}},{{y}_{1}} \right)\]and. is\[\dfrac{8}{k}\]. Now the equation of the line (the chord) passing through the point \[\left( h,k \right)\] and having slope \[\dfrac{8}{k}\]is given by,
\[\Rightarrow \left( y-k \right)=\dfrac{8}{k}\left( x-h \right)\].
\[\Rightarrow 8x-ky=8h-{{k}^{2}}\] ---(6).
But we are given that the equation of the chord is \[2x+y=p\]---(7).
Since line eq. (6) and eq. (7) are identical, then the ratio of the respective coefficients must be equal therefore we will get
\[\Rightarrow \dfrac{8}{2}=\dfrac{-k}{1}=\dfrac{8h-{{k}^{2}}}{p}\].
\[\Rightarrow 4=-k=\dfrac{8h-{{k}^{2}}}{p}\].
\[\Rightarrow k=-4\], \[8h-{{k}^{2}}=4p\].
\[\Rightarrow k=-4\], \[8h-16=4p\]---(8).
We can see that the options (c) and (d) have $k=-4$. So, let us substitute the values of h and k in the equation to get the correct options.
Let us substitute option (c) \[p=-2\], $h=2$, $k=-4$ in equation (8) to verify them.
So, we get $8\left( 2 \right)-16=4\left( -2 \right)$.
$\Rightarrow 0=-8$, which is a contradiction.
So, option (c) is not correct.
Let us substitute option (d) \[p=2\], $h=3$, $k=-4$ in equation (8) to verify them.
So, we get $8\left( 3 \right)-16=4\left( 2 \right)$.
$\Rightarrow 8=8$, which is true.
So, option (d) is correct.
$\therefore$ The correct option for the given problem is (d).
Note: Alternatively, we can solve the problem by using the formula of the chord of the parabola \[{{y}^{2}}=4ax\] having midpoint $\left( {{x}_{1}},{{y}_{1}} \right)$ is \[y{{y}_{1}}-4ax={{y}_{1}}^{2}-4a{{x}_{1}}\]. We should not make calculation mistakes while solving this problem. We can also use the parametric points of the parabola $\left( a{{t}^{2}},2at \right)$ to solve this problem, but this increases one more variable which may lead us to confusion.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

