
If a, b, c, d are non zero real numbers such that
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$, then a, b, c, d are in
A) AP
B) GP
C) HP
D) none of these
Answer
591.6k+ views
Hint: In this question it is given that if a, b, c, d are non zero real numbers such that
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$, then we have to find the relation of a, b, c and d. So to find the solution we have to expand and rearrange the given inequation by using proper identity.
So the identity that we will be using are,
$$\left( x+y+z\right)^{2} =x^{2}+y^{2}+z^{2}+2xy+2yz+2zx$$.......(1)
$$\left( x-y\right)^{2} =x^{2}-2xy+y^{2}$$..........(2)
Complete step-by-step solution:
Given,
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq \left( ab\right)^{2} +\left( bc\right)^{2} +\left( cd\right)^{2} +2\left( ab\right) \left( bc\right) +2\left( bc\right) \left( cd\right) +2\left( cd\right) \left( ab\right) $$ [ using formula (1) in RHS]
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq a^{2}b^{2}+b^{2}c^{2}+c^{2}d^{2}+2acb^{2}+2bdc^{2}+2adbc$$
Now, cancelling $a^{2}b^{2},\ b^{2}c^{2},\ c^{2}d^{2}$ in the both side of the above equation, we get
$$a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}d^{2}+c^{2}b^{2}+c^{4}\leq 2acb^{2}+2bdc^{2}+2adbc$$
$$\Rightarrow a^{2}c^{2}-2acb^{2}+b^{4}+b^{2}d^{2}-2bdc^{2}+c^{4}+a^{2}d^{2}-2adbc+b^{2}c^{2}\leq 0$$ [ by changing the side]
$$\Rightarrow \{ \left( ac\right)^{2} -2\left( ac\right) b^{2}+\left( b^{2}\right)^{2} \} +\{ \left( bd\right)^{2} -2\left( bd\right) c^{2}+\left( c^{2}\right)^{2} \} +\{ \left( ad\right)^{2} -2\left( ad\right) \left( bc\right) +\left( bc\right)^{2} \} \leq 0$$
$$\Rightarrow \left( ac-b^{2}\right)^{2} +\left( bd-c^{2}\right)^{2} +\left( ad-bc\right)^{2} \leq 0$$ [ using formula (2)]
If the summation of the squires of more than 1 term is zero then it implies each term is equal to zero.
i.e, $$\left( ac-b^{2}\right) =0,\ \left( bd-c^{2}\right) =0\text{ and } \left( ad-bc\right) =0$$
Therefore, $b^{2}=ac$; $c^{2}=bd$; $ad=bc$
Hence, a, b, c, d are in G.P.
Therefore, the correct option is option B.
Note: So you might be thinking how we concluded a, b, c, d are in GP just by these obtained expressions $b^{2}=ac$; $c^{2}=bd$; $ad=bc$, because as we know that if a, b, c, d are in Geometric Progression(GP) then ‘b’ and ‘c’ will be the geometric mean of a, c and b, d respectively, i.e, $b^{2}=ac$; $c^{2}=bd$, and they also have common ratio, i.e, $$\dfrac{b}{a} =\dfrac{c}{b} =\dfrac{d}{c}$$, so from here we can write $ad=bc$.
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$, then we have to find the relation of a, b, c and d. So to find the solution we have to expand and rearrange the given inequation by using proper identity.
So the identity that we will be using are,
$$\left( x+y+z\right)^{2} =x^{2}+y^{2}+z^{2}+2xy+2yz+2zx$$.......(1)
$$\left( x-y\right)^{2} =x^{2}-2xy+y^{2}$$..........(2)
Complete step-by-step solution:
Given,
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq \left( ab\right)^{2} +\left( bc\right)^{2} +\left( cd\right)^{2} +2\left( ab\right) \left( bc\right) +2\left( bc\right) \left( cd\right) +2\left( cd\right) \left( ab\right) $$ [ using formula (1) in RHS]
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq a^{2}b^{2}+b^{2}c^{2}+c^{2}d^{2}+2acb^{2}+2bdc^{2}+2adbc$$
Now, cancelling $a^{2}b^{2},\ b^{2}c^{2},\ c^{2}d^{2}$ in the both side of the above equation, we get
$$a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}d^{2}+c^{2}b^{2}+c^{4}\leq 2acb^{2}+2bdc^{2}+2adbc$$
$$\Rightarrow a^{2}c^{2}-2acb^{2}+b^{4}+b^{2}d^{2}-2bdc^{2}+c^{4}+a^{2}d^{2}-2adbc+b^{2}c^{2}\leq 0$$ [ by changing the side]
$$\Rightarrow \{ \left( ac\right)^{2} -2\left( ac\right) b^{2}+\left( b^{2}\right)^{2} \} +\{ \left( bd\right)^{2} -2\left( bd\right) c^{2}+\left( c^{2}\right)^{2} \} +\{ \left( ad\right)^{2} -2\left( ad\right) \left( bc\right) +\left( bc\right)^{2} \} \leq 0$$
$$\Rightarrow \left( ac-b^{2}\right)^{2} +\left( bd-c^{2}\right)^{2} +\left( ad-bc\right)^{2} \leq 0$$ [ using formula (2)]
If the summation of the squires of more than 1 term is zero then it implies each term is equal to zero.
i.e, $$\left( ac-b^{2}\right) =0,\ \left( bd-c^{2}\right) =0\text{ and } \left( ad-bc\right) =0$$
Therefore, $b^{2}=ac$; $c^{2}=bd$; $ad=bc$
Hence, a, b, c, d are in G.P.
Therefore, the correct option is option B.
Note: So you might be thinking how we concluded a, b, c, d are in GP just by these obtained expressions $b^{2}=ac$; $c^{2}=bd$; $ad=bc$, because as we know that if a, b, c, d are in Geometric Progression(GP) then ‘b’ and ‘c’ will be the geometric mean of a, c and b, d respectively, i.e, $b^{2}=ac$; $c^{2}=bd$, and they also have common ratio, i.e, $$\dfrac{b}{a} =\dfrac{c}{b} =\dfrac{d}{c}$$, so from here we can write $ad=bc$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

