
If a, b, c, d are non zero real numbers such that
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$, then a, b, c, d are in
A) AP
B) GP
C) HP
D) none of these
Answer
606.3k+ views
Hint: In this question it is given that if a, b, c, d are non zero real numbers such that
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$, then we have to find the relation of a, b, c and d. So to find the solution we have to expand and rearrange the given inequation by using proper identity.
So the identity that we will be using are,
$$\left( x+y+z\right)^{2} =x^{2}+y^{2}+z^{2}+2xy+2yz+2zx$$.......(1)
$$\left( x-y\right)^{2} =x^{2}-2xy+y^{2}$$..........(2)
Complete step-by-step solution:
Given,
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq \left( ab\right)^{2} +\left( bc\right)^{2} +\left( cd\right)^{2} +2\left( ab\right) \left( bc\right) +2\left( bc\right) \left( cd\right) +2\left( cd\right) \left( ab\right) $$ [ using formula (1) in RHS]
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq a^{2}b^{2}+b^{2}c^{2}+c^{2}d^{2}+2acb^{2}+2bdc^{2}+2adbc$$
Now, cancelling $a^{2}b^{2},\ b^{2}c^{2},\ c^{2}d^{2}$ in the both side of the above equation, we get
$$a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}d^{2}+c^{2}b^{2}+c^{4}\leq 2acb^{2}+2bdc^{2}+2adbc$$
$$\Rightarrow a^{2}c^{2}-2acb^{2}+b^{4}+b^{2}d^{2}-2bdc^{2}+c^{4}+a^{2}d^{2}-2adbc+b^{2}c^{2}\leq 0$$ [ by changing the side]
$$\Rightarrow \{ \left( ac\right)^{2} -2\left( ac\right) b^{2}+\left( b^{2}\right)^{2} \} +\{ \left( bd\right)^{2} -2\left( bd\right) c^{2}+\left( c^{2}\right)^{2} \} +\{ \left( ad\right)^{2} -2\left( ad\right) \left( bc\right) +\left( bc\right)^{2} \} \leq 0$$
$$\Rightarrow \left( ac-b^{2}\right)^{2} +\left( bd-c^{2}\right)^{2} +\left( ad-bc\right)^{2} \leq 0$$ [ using formula (2)]
If the summation of the squires of more than 1 term is zero then it implies each term is equal to zero.
i.e, $$\left( ac-b^{2}\right) =0,\ \left( bd-c^{2}\right) =0\text{ and } \left( ad-bc\right) =0$$
Therefore, $b^{2}=ac$; $c^{2}=bd$; $ad=bc$
Hence, a, b, c, d are in G.P.
Therefore, the correct option is option B.
Note: So you might be thinking how we concluded a, b, c, d are in GP just by these obtained expressions $b^{2}=ac$; $c^{2}=bd$; $ad=bc$, because as we know that if a, b, c, d are in Geometric Progression(GP) then ‘b’ and ‘c’ will be the geometric mean of a, c and b, d respectively, i.e, $b^{2}=ac$; $c^{2}=bd$, and they also have common ratio, i.e, $$\dfrac{b}{a} =\dfrac{c}{b} =\dfrac{d}{c}$$, so from here we can write $ad=bc$.
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$, then we have to find the relation of a, b, c and d. So to find the solution we have to expand and rearrange the given inequation by using proper identity.
So the identity that we will be using are,
$$\left( x+y+z\right)^{2} =x^{2}+y^{2}+z^{2}+2xy+2yz+2zx$$.......(1)
$$\left( x-y\right)^{2} =x^{2}-2xy+y^{2}$$..........(2)
Complete step-by-step solution:
Given,
$$\left( a^{2}+b^{2}+c^{2}\right) \left( b^{2}+c^{2}+d^{2}\right) \leq \left( ab+bc+cd\right)^{2} $$
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq \left( ab\right)^{2} +\left( bc\right)^{2} +\left( cd\right)^{2} +2\left( ab\right) \left( bc\right) +2\left( bc\right) \left( cd\right) +2\left( cd\right) \left( ab\right) $$ [ using formula (1) in RHS]
$$\Rightarrow a^{2}b^{2}+a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}c^{2}+b^{2}d^{2}+c^{2}b^{2}+c^{4}+c^{2}d^{2}\leq a^{2}b^{2}+b^{2}c^{2}+c^{2}d^{2}+2acb^{2}+2bdc^{2}+2adbc$$
Now, cancelling $a^{2}b^{2},\ b^{2}c^{2},\ c^{2}d^{2}$ in the both side of the above equation, we get
$$a^{2}c^{2}+a^{2}d^{2}+b^{4}+b^{2}d^{2}+c^{2}b^{2}+c^{4}\leq 2acb^{2}+2bdc^{2}+2adbc$$
$$\Rightarrow a^{2}c^{2}-2acb^{2}+b^{4}+b^{2}d^{2}-2bdc^{2}+c^{4}+a^{2}d^{2}-2adbc+b^{2}c^{2}\leq 0$$ [ by changing the side]
$$\Rightarrow \{ \left( ac\right)^{2} -2\left( ac\right) b^{2}+\left( b^{2}\right)^{2} \} +\{ \left( bd\right)^{2} -2\left( bd\right) c^{2}+\left( c^{2}\right)^{2} \} +\{ \left( ad\right)^{2} -2\left( ad\right) \left( bc\right) +\left( bc\right)^{2} \} \leq 0$$
$$\Rightarrow \left( ac-b^{2}\right)^{2} +\left( bd-c^{2}\right)^{2} +\left( ad-bc\right)^{2} \leq 0$$ [ using formula (2)]
If the summation of the squires of more than 1 term is zero then it implies each term is equal to zero.
i.e, $$\left( ac-b^{2}\right) =0,\ \left( bd-c^{2}\right) =0\text{ and } \left( ad-bc\right) =0$$
Therefore, $b^{2}=ac$; $c^{2}=bd$; $ad=bc$
Hence, a, b, c, d are in G.P.
Therefore, the correct option is option B.
Note: So you might be thinking how we concluded a, b, c, d are in GP just by these obtained expressions $b^{2}=ac$; $c^{2}=bd$; $ad=bc$, because as we know that if a, b, c, d are in Geometric Progression(GP) then ‘b’ and ‘c’ will be the geometric mean of a, c and b, d respectively, i.e, $b^{2}=ac$; $c^{2}=bd$, and they also have common ratio, i.e, $$\dfrac{b}{a} =\dfrac{c}{b} =\dfrac{d}{c}$$, so from here we can write $ad=bc$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

