If a, b, c be positive real numbers and $\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where $k=a+b+c$, then $\theta $ equals
A. $\dfrac{\pi }{2}$
B. $\dfrac{\pi }{4}$
C. $\pi $
D. none of these
Answer
Verified
469.2k+ views
Hint: We will solve the given question by considering the terms, $\sqrt{\dfrac{ak}{cb}}$ , ${{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}$ , $\sqrt{\dfrac{ck}{ab}}$ and substituting the value of $k=a+b+c$ in each of them. Then, we will then use the trigonometric identity, ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ . After substituting the values of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$ in the above identity and simplifying further, we will be able to get the value of $\theta $ .
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE