Answer
Verified
429.9k+ views
Hint: We will solve the given question by considering the terms, $\sqrt{\dfrac{ak}{cb}}$ , ${{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}$ , $\sqrt{\dfrac{ck}{ab}}$ and substituting the value of $k=a+b+c$ in each of them. Then, we will then use the trigonometric identity, ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ . After substituting the values of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$ in the above identity and simplifying further, we will be able to get the value of $\theta $ .
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell