
If a, b, c be positive real numbers and $\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where $k=a+b+c$, then $\theta $ equals
A. $\dfrac{\pi }{2}$
B. $\dfrac{\pi }{4}$
C. $\pi $
D. none of these
Answer
568.2k+ views
Hint: We will solve the given question by considering the terms, $\sqrt{\dfrac{ak}{cb}}$ , ${{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}$ , $\sqrt{\dfrac{ck}{ab}}$ and substituting the value of $k=a+b+c$ in each of them. Then, we will then use the trigonometric identity, ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ . After substituting the values of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$ in the above identity and simplifying further, we will be able to get the value of $\theta $ .
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

