
If A, B, C are the angles of a triangle then $$\cos A + \cos B + \cos C = ?$$
Answer
479.1k+ views
Hint: Here in this question, we have to find the value given trigonometric expression. For this, first we need to consider the sum of inner angles of triangle $$\vartriangle ABC$$, then apply a double or half angle formula, sum to product formula and other standard formula on simplification we get the required solution.
Complete step by step solution:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function.
Consider the given question:
If A, B, C are angles of a triangle, then we know the sum of all interior angles of a triangle should be equal to $${180^ \circ }$$.
$$ \Rightarrow \,\,A + B + C = {180^ \circ }$$
And
$$ \Rightarrow \,\,A + B = {180^ \circ } - C$$.
Consider,
$$ \Rightarrow \,\,\,\cos A + \cos B + \cos C$$ --------- (1)
Let us by the sum to product formula and double angle of trigonometric ratios:
The sum to product of cosine ratio is:
$$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right)$$.
The double angle of cosine ratio is:
$$\cos 2A = 1 - 2{\sin ^2}A$$ or $$\cos A = 1 - 2{\sin ^2}\left( {\dfrac{A}{2}} \right)$$.
Then equation (1) becomes
$$ \Rightarrow \,\,\,2\cos \left( {\dfrac{{A + B}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
But $$A + B = {180^ \circ } - C$$
$$ \Rightarrow \,\,\,2\cos \left( {\dfrac{{{{180}^ \circ } - C}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
$$ \Rightarrow \,\,\,2\cos \left( {\dfrac{{{{180}^ \circ }}}{2} - \dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
$$ \Rightarrow \,\,\,2\cos \left( {{{90}^ \circ } - \dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$ ----- (2)
By the ASTC rule $$\left( {{{90}^ \circ } - \theta } \right)$$ belongs to the first quadrant in that all six ratios are positive and
Let us by the complementary angles of trigonometric ratios:
The angle can be written as
$$\sin \left( {90 - \theta } \right) = \cos \theta $$
$$\cos \left( {90 - \theta } \right) = \sin \theta $$
Then equation (2) becomes
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
Take $$2\sin \left( {\dfrac{C}{2}} \right)$$ as common term, then we have
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {\cos \left( {\dfrac{{A - B}}{2}} \right) - \sin \left( {\dfrac{C}{2}} \right)} \right) + 1$$
We already showed $$\cos \left( {\dfrac{{A + B}}{2}} \right) = \sin \left( {\dfrac{C}{2}} \right)$$, then
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {\cos \left( {\dfrac{{A - B}}{2}} \right) - \cos \left( {\dfrac{{A + B}}{2}} \right)} \right) + 1$$ ---- (3)
Again by the sum to product formula
$$\cos A - \operatorname{Cos} B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right) \cdot \sin \left( {\dfrac{{A - B}}{2}} \right)$$
Or
$$\cos \left( {\dfrac{{A + B}}{2}} \right) - \operatorname{Cos} \left( {\dfrac{{A + B}}{2}} \right) = - 2\sin \left( {\dfrac{A}{2}} \right) \cdot \sin \left( {\dfrac{B}{2}} \right)$$
Then equation (3) becomes
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {2\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1$$
Then on simplification, we get
$$\therefore \,\,\,4\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right) + 1$$
Hence, the required value is
So, the correct answer is “$$ \,\,\,4\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right) + 1$$”.
Note: When solving the trigonometry-based questions, we have to know the definitions of six trigonometric ratios. Remember, the sum to product formula of trigonometry i.e.,
$$\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)\cos \left( {\dfrac{{A \mp B}}{2}} \right)$$
$$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$$
$$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$$
Complete step by step solution:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function.
Consider the given question:
If A, B, C are angles of a triangle, then we know the sum of all interior angles of a triangle should be equal to $${180^ \circ }$$.
$$ \Rightarrow \,\,A + B + C = {180^ \circ }$$
And
$$ \Rightarrow \,\,A + B = {180^ \circ } - C$$.
Consider,
$$ \Rightarrow \,\,\,\cos A + \cos B + \cos C$$ --------- (1)
Let us by the sum to product formula and double angle of trigonometric ratios:
The sum to product of cosine ratio is:
$$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right)$$.
The double angle of cosine ratio is:
$$\cos 2A = 1 - 2{\sin ^2}A$$ or $$\cos A = 1 - 2{\sin ^2}\left( {\dfrac{A}{2}} \right)$$.
Then equation (1) becomes
$$ \Rightarrow \,\,\,2\cos \left( {\dfrac{{A + B}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
But $$A + B = {180^ \circ } - C$$
$$ \Rightarrow \,\,\,2\cos \left( {\dfrac{{{{180}^ \circ } - C}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
$$ \Rightarrow \,\,\,2\cos \left( {\dfrac{{{{180}^ \circ }}}{2} - \dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
$$ \Rightarrow \,\,\,2\cos \left( {{{90}^ \circ } - \dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$ ----- (2)
By the ASTC rule $$\left( {{{90}^ \circ } - \theta } \right)$$ belongs to the first quadrant in that all six ratios are positive and
Let us by the complementary angles of trigonometric ratios:
The angle can be written as
$$\sin \left( {90 - \theta } \right) = \cos \theta $$
$$\cos \left( {90 - \theta } \right) = \sin \theta $$
Then equation (2) becomes
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$$
Take $$2\sin \left( {\dfrac{C}{2}} \right)$$ as common term, then we have
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {\cos \left( {\dfrac{{A - B}}{2}} \right) - \sin \left( {\dfrac{C}{2}} \right)} \right) + 1$$
We already showed $$\cos \left( {\dfrac{{A + B}}{2}} \right) = \sin \left( {\dfrac{C}{2}} \right)$$, then
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {\cos \left( {\dfrac{{A - B}}{2}} \right) - \cos \left( {\dfrac{{A + B}}{2}} \right)} \right) + 1$$ ---- (3)
Again by the sum to product formula
$$\cos A - \operatorname{Cos} B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right) \cdot \sin \left( {\dfrac{{A - B}}{2}} \right)$$
Or
$$\cos \left( {\dfrac{{A + B}}{2}} \right) - \operatorname{Cos} \left( {\dfrac{{A + B}}{2}} \right) = - 2\sin \left( {\dfrac{A}{2}} \right) \cdot \sin \left( {\dfrac{B}{2}} \right)$$
Then equation (3) becomes
$$ \Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {2\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1$$
Then on simplification, we get
$$\therefore \,\,\,4\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right) + 1$$
Hence, the required value is
So, the correct answer is “$$ \,\,\,4\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right) + 1$$”.
Note: When solving the trigonometry-based questions, we have to know the definitions of six trigonometric ratios. Remember, the sum to product formula of trigonometry i.e.,
$$\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)\cos \left( {\dfrac{{A \mp B}}{2}} \right)$$
$$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$$
$$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$$
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

