
If a, b, c are real numbers then the value of \[\underset{t\to 0}{\mathop{\lim }}\,\ln \left( \dfrac{1}{t}\int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right)\].
A) \[abc\] B) \[\dfrac{ab}{c}\] C) \[\dfrac{bc}{a}\] D) \[\dfrac{ca}{b}\]
Answer
603.3k+ views
Hint: Use Leibniz Rule and L Hopital’s Rule for evaluating the limit.
Complete step-by-step answer:
We know that \[\underset{x\to a}{\mathop{\lim }}\,\ln (f(x))\]=\[\ln \left( \underset{x\to a}{\mathop{\lim }}\,(f(x)) \right)\].
So,
\[\underset{t\to 0}{\mathop{\lim }}\,\ln \left( \dfrac{1}{t}\int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right)\]
\[\dfrac{\int\limits_{0}^{0}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx}{0}\]
If we substitute\[t\] as \[0\] in the limit we get,
\[\dfrac{\int\limits_{0}^{0}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx}{0}\]
We know that\[\int\limits_{a}^{a}{f(x)dx=0}\]. Therefore, the numerator tends to \[0\].
\[L=\dfrac{0}{0}\]
The numerator and denominator tend to \[0\] as \[t\] tends to \[0\], so the limit is of the form $\dfrac{0}{0}$. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit.
We can now evaluate the numerator using Leibniz’s Rule i.e.
$\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\}-\left\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\}$
Where \[a'\left( x \right)\]and \[b'\left( x \right)\] are derivatives of functions \[a\left( x \right)\]and \[b\left( x \right)\]with respect to \[x\].
So,
\[\dfrac{d}{dt}\left( \int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right)={{(1+a\sin bt)}^{\dfrac{c}{t}}}(1)-{{(1+a\sin b(0))}^{\dfrac{c}{0}}}(0)\]
\[={{(1+a\sin bt)}^{\dfrac{c}{t}}}\]
The denominator equals to \[1\] as\[\dfrac{d}{dt}(t)=1\].
So, our limit now equals,
\[\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{(1+a\sin bt)}^{\dfrac{c}{t}}} \right)\]
This limit is of the form \[{{1}^{\infty }}\] because \[a\sin bt\] tends to \[0\] as \[t\] tends to \[0\] and \[\dfrac{c}{t}\] tends to \[+\infty \] as \[t\] tends to \[0\].
Limits of this form can be resolve by using \[\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1+f(x) \right)}^{\dfrac{1}{f(x)}}}=e\] if \[f\left( x \right)\]tends to \[0\] as \[x\] tends to \[0\].
So, writing our question in this format
\[=\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{(1+a\sin bt)}^{\dfrac{1}{a\sin bt}\dfrac{ca\sin bt}{t}}} \right)\]
\[=\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{e}^{\dfrac{ca\sin bt}{t}}} \right)\]
Also we know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin kx}{kx}=k\]. We can prove this by using L’Hopital Rule and differentiating the numerator and denominator. So our limit becomes,
\[\ln \left( {{e}^{abc}} \right)\]
We know that \[\ln \left( {{e}^{x}} \right)=x\]
Therefore,
\[=abc\]
This is option A)\[abc\]
Answer is option A)\[abc\].
Note: Students must be familiar with the common limit forms like \[{{1}^{\infty }}\], $\dfrac{0}{0}$. Also they must be comfortable to use L’Hopital Rule and Leibniz Rule. They must also know the standard limits like\[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin kx}{kx}=k\].
Complete step-by-step answer:
We know that \[\underset{x\to a}{\mathop{\lim }}\,\ln (f(x))\]=\[\ln \left( \underset{x\to a}{\mathop{\lim }}\,(f(x)) \right)\].
So,
\[\underset{t\to 0}{\mathop{\lim }}\,\ln \left( \dfrac{1}{t}\int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right)\]
\[\dfrac{\int\limits_{0}^{0}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx}{0}\]
If we substitute\[t\] as \[0\] in the limit we get,
\[\dfrac{\int\limits_{0}^{0}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx}{0}\]
We know that\[\int\limits_{a}^{a}{f(x)dx=0}\]. Therefore, the numerator tends to \[0\].
\[L=\dfrac{0}{0}\]
The numerator and denominator tend to \[0\] as \[t\] tends to \[0\], so the limit is of the form $\dfrac{0}{0}$. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit.
We can now evaluate the numerator using Leibniz’s Rule i.e.
$\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\}-\left\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\}$
Where \[a'\left( x \right)\]and \[b'\left( x \right)\] are derivatives of functions \[a\left( x \right)\]and \[b\left( x \right)\]with respect to \[x\].
So,
\[\dfrac{d}{dt}\left( \int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right)={{(1+a\sin bt)}^{\dfrac{c}{t}}}(1)-{{(1+a\sin b(0))}^{\dfrac{c}{0}}}(0)\]
\[={{(1+a\sin bt)}^{\dfrac{c}{t}}}\]
The denominator equals to \[1\] as\[\dfrac{d}{dt}(t)=1\].
So, our limit now equals,
\[\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{(1+a\sin bt)}^{\dfrac{c}{t}}} \right)\]
This limit is of the form \[{{1}^{\infty }}\] because \[a\sin bt\] tends to \[0\] as \[t\] tends to \[0\] and \[\dfrac{c}{t}\] tends to \[+\infty \] as \[t\] tends to \[0\].
Limits of this form can be resolve by using \[\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1+f(x) \right)}^{\dfrac{1}{f(x)}}}=e\] if \[f\left( x \right)\]tends to \[0\] as \[x\] tends to \[0\].
So, writing our question in this format
\[=\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{(1+a\sin bt)}^{\dfrac{1}{a\sin bt}\dfrac{ca\sin bt}{t}}} \right)\]
\[=\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{e}^{\dfrac{ca\sin bt}{t}}} \right)\]
Also we know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin kx}{kx}=k\]. We can prove this by using L’Hopital Rule and differentiating the numerator and denominator. So our limit becomes,
\[\ln \left( {{e}^{abc}} \right)\]
We know that \[\ln \left( {{e}^{x}} \right)=x\]
Therefore,
\[=abc\]
This is option A)\[abc\]
Answer is option A)\[abc\].
Note: Students must be familiar with the common limit forms like \[{{1}^{\infty }}\], $\dfrac{0}{0}$. Also they must be comfortable to use L’Hopital Rule and Leibniz Rule. They must also know the standard limits like\[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin kx}{kx}=k\].
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

