
If a, b, c are non-zero and different from 1, then the value of \[\left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right|\] is
A) 0
B) \[1 + {\log _a}(a + b + c)\]
C) \[{\log _a}(a + b + c)\]
D) 1
Answer
504.3k+ views
Hint: Determinant means a matrix is an array of many numbers. We will assign the given determinant as delta. Then we will use the value i.e. log 1 = 0. Also, we will use the division rule i.e. \[{\log _a}(\dfrac{m}{n}) = {\log _a}m - {\log _a}n\]. Next, we will substitute all the values in the given determinant. Thus, solving the determinant we will get the final output.
Complete step by step solution:
Let the given determinant be delta ( \[\Delta \] ),
\[\therefore \Delta = \left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right|\]
As we know, log 1= 0 with any base.
\[\therefore {\log _a}1 = 0\] , \[{\log _b}1 = 0\] and \[{\log _c}1 = 0\]
Substituting the above value in the given determinant, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&0&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&0
\end{array}} \right|\]
As we know, \[{\log _a}(\dfrac{m}{n}) = {\log _a}m - {\log _a}n\].
Applying this division rule, we will get the values as below:
First,
\[{\log _a}(\dfrac{1}{b})\]
\[ = {\log _a}1 - {\log _a}b\]
\[ = - {\log _a}b\]
And,
\[{\log _a}(\dfrac{1}{c})\]
\[ = {\log _a}1 - {\log _a}c\]
\[ = - {\log _a}c\]
Now, substituting these above values, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{ - {{\log }_a}b}&0&{ - {{\log }_a}c} \\
{ - {{\log }_a}c}&{{{\log }_a}c}&0
\end{array}} \right|\]
On evaluating this above determinant, we will get,
\[ \Rightarrow \Delta = 0 - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ {\log _a}c( - {\log _a}b) - 0( - {\log _a}c)\} \]
\[ \Rightarrow \Delta = - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ - {\log _a}c({\log _a}b) - 0\} \]
Removing the brackets, we will get,
\[ \Rightarrow \Delta = 0 + {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2} - 0\]
\[ \Rightarrow \Delta = {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2}\]
\[ \Rightarrow \Delta = 0\]
Hence, the value of the given determinant \[\left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right| = 0\].
Note:
> The given matrix is in the form of a skew symmetric matrix. For any skew symmetric matrix $A$, $A=-A^T$, the determinant will be always zero.
> A logarithm of a number with a base is equal to another number. A logarithm is just the opposite function of exponentiation. A logarithm has various important properties that prove multiplication and division of logarithms can also be written in the form of logarithm of addition and subtraction respectively. Also, log 0 is undefined. Because, we never get the value 0, by raising any value to the power of anything else. The two most common types of logarithms are:-
1) Common Logarithm (or) Base 10 Logarithm
2) Natural Logarithm (or) Base e Logarithm
Complete step by step solution:
Let the given determinant be delta ( \[\Delta \] ),
\[\therefore \Delta = \left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right|\]
As we know, log 1= 0 with any base.
\[\therefore {\log _a}1 = 0\] , \[{\log _b}1 = 0\] and \[{\log _c}1 = 0\]
Substituting the above value in the given determinant, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&0&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&0
\end{array}} \right|\]
As we know, \[{\log _a}(\dfrac{m}{n}) = {\log _a}m - {\log _a}n\].
Applying this division rule, we will get the values as below:
First,
\[{\log _a}(\dfrac{1}{b})\]
\[ = {\log _a}1 - {\log _a}b\]
\[ = - {\log _a}b\]
And,
\[{\log _a}(\dfrac{1}{c})\]
\[ = {\log _a}1 - {\log _a}c\]
\[ = - {\log _a}c\]
Now, substituting these above values, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{ - {{\log }_a}b}&0&{ - {{\log }_a}c} \\
{ - {{\log }_a}c}&{{{\log }_a}c}&0
\end{array}} \right|\]
On evaluating this above determinant, we will get,
\[ \Rightarrow \Delta = 0 - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ {\log _a}c( - {\log _a}b) - 0( - {\log _a}c)\} \]
\[ \Rightarrow \Delta = - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ - {\log _a}c({\log _a}b) - 0\} \]
Removing the brackets, we will get,
\[ \Rightarrow \Delta = 0 + {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2} - 0\]
\[ \Rightarrow \Delta = {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2}\]
\[ \Rightarrow \Delta = 0\]
Hence, the value of the given determinant \[\left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right| = 0\].
Note:
> The given matrix is in the form of a skew symmetric matrix. For any skew symmetric matrix $A$, $A=-A^T$, the determinant will be always zero.
> A logarithm of a number with a base is equal to another number. A logarithm is just the opposite function of exponentiation. A logarithm has various important properties that prove multiplication and division of logarithms can also be written in the form of logarithm of addition and subtraction respectively. Also, log 0 is undefined. Because, we never get the value 0, by raising any value to the power of anything else. The two most common types of logarithms are:-
1) Common Logarithm (or) Base 10 Logarithm
2) Natural Logarithm (or) Base e Logarithm
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

