
If a, b, c are non-zero and different from 1, then the value of \[\left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right|\] is
A) 0
B) \[1 + {\log _a}(a + b + c)\]
C) \[{\log _a}(a + b + c)\]
D) 1
Answer
407.7k+ views
Hint: Determinant means a matrix is an array of many numbers. We will assign the given determinant as delta. Then we will use the value i.e. log 1 = 0. Also, we will use the division rule i.e. \[{\log _a}(\dfrac{m}{n}) = {\log _a}m - {\log _a}n\]. Next, we will substitute all the values in the given determinant. Thus, solving the determinant we will get the final output.
Complete step by step solution:
Let the given determinant be delta ( \[\Delta \] ),
\[\therefore \Delta = \left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right|\]
As we know, log 1= 0 with any base.
\[\therefore {\log _a}1 = 0\] , \[{\log _b}1 = 0\] and \[{\log _c}1 = 0\]
Substituting the above value in the given determinant, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&0&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&0
\end{array}} \right|\]
As we know, \[{\log _a}(\dfrac{m}{n}) = {\log _a}m - {\log _a}n\].
Applying this division rule, we will get the values as below:
First,
\[{\log _a}(\dfrac{1}{b})\]
\[ = {\log _a}1 - {\log _a}b\]
\[ = - {\log _a}b\]
And,
\[{\log _a}(\dfrac{1}{c})\]
\[ = {\log _a}1 - {\log _a}c\]
\[ = - {\log _a}c\]
Now, substituting these above values, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{ - {{\log }_a}b}&0&{ - {{\log }_a}c} \\
{ - {{\log }_a}c}&{{{\log }_a}c}&0
\end{array}} \right|\]
On evaluating this above determinant, we will get,
\[ \Rightarrow \Delta = 0 - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ {\log _a}c( - {\log _a}b) - 0( - {\log _a}c)\} \]
\[ \Rightarrow \Delta = - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ - {\log _a}c({\log _a}b) - 0\} \]
Removing the brackets, we will get,
\[ \Rightarrow \Delta = 0 + {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2} - 0\]
\[ \Rightarrow \Delta = {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2}\]
\[ \Rightarrow \Delta = 0\]
Hence, the value of the given determinant \[\left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right| = 0\].
Note:
> The given matrix is in the form of a skew symmetric matrix. For any skew symmetric matrix $A$, $A=-A^T$, the determinant will be always zero.
> A logarithm of a number with a base is equal to another number. A logarithm is just the opposite function of exponentiation. A logarithm has various important properties that prove multiplication and division of logarithms can also be written in the form of logarithm of addition and subtraction respectively. Also, log 0 is undefined. Because, we never get the value 0, by raising any value to the power of anything else. The two most common types of logarithms are:-
1) Common Logarithm (or) Base 10 Logarithm
2) Natural Logarithm (or) Base e Logarithm
Complete step by step solution:
Let the given determinant be delta ( \[\Delta \] ),
\[\therefore \Delta = \left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right|\]
As we know, log 1= 0 with any base.
\[\therefore {\log _a}1 = 0\] , \[{\log _b}1 = 0\] and \[{\log _c}1 = 0\]
Substituting the above value in the given determinant, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&0&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&0
\end{array}} \right|\]
As we know, \[{\log _a}(\dfrac{m}{n}) = {\log _a}m - {\log _a}n\].
Applying this division rule, we will get the values as below:
First,
\[{\log _a}(\dfrac{1}{b})\]
\[ = {\log _a}1 - {\log _a}b\]
\[ = - {\log _a}b\]
And,
\[{\log _a}(\dfrac{1}{c})\]
\[ = {\log _a}1 - {\log _a}c\]
\[ = - {\log _a}c\]
Now, substituting these above values, we will get,
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
0&{{{\log }_a}b}&{{{\log }_a}c} \\
{ - {{\log }_a}b}&0&{ - {{\log }_a}c} \\
{ - {{\log }_a}c}&{{{\log }_a}c}&0
\end{array}} \right|\]
On evaluating this above determinant, we will get,
\[ \Rightarrow \Delta = 0 - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ {\log _a}c( - {\log _a}b) - 0( - {\log _a}c)\} \]
\[ \Rightarrow \Delta = - {\log _a}b\{ 0 - {({\log _a}c)^2}\} + {\log _a}c\{ - {\log _a}c({\log _a}b) - 0\} \]
Removing the brackets, we will get,
\[ \Rightarrow \Delta = 0 + {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2} - 0\]
\[ \Rightarrow \Delta = {\log _a}b{({\log _a}c)^2} - {\log _a}b{({\log _a}c)^2}\]
\[ \Rightarrow \Delta = 0\]
Hence, the value of the given determinant \[\left| {\begin{array}{*{20}{c}}
{{{\log }_a}1}&{{{\log }_a}b}&{{{\log }_a}c} \\
{{{\log }_a}(\dfrac{1}{b})}&{{{\log }_b}1}&{{{\log }_a}(\dfrac{1}{c})} \\
{{{\log }_a}(\dfrac{1}{c})}&{{{\log }_a}c}&{{{\log }_c}1}
\end{array}} \right| = 0\].
Note:
> The given matrix is in the form of a skew symmetric matrix. For any skew symmetric matrix $A$, $A=-A^T$, the determinant will be always zero.
> A logarithm of a number with a base is equal to another number. A logarithm is just the opposite function of exponentiation. A logarithm has various important properties that prove multiplication and division of logarithms can also be written in the form of logarithm of addition and subtraction respectively. Also, log 0 is undefined. Because, we never get the value 0, by raising any value to the power of anything else. The two most common types of logarithms are:-
1) Common Logarithm (or) Base 10 Logarithm
2) Natural Logarithm (or) Base e Logarithm
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
