
If a, b, c are in G.P., then
A. ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ are in G.P.
B. ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$ are in G.P.
C. $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$ are in G.P.
D. None of the above
Answer
576.6k+ views
Hint: We’ll first write the conditional equation for a, b, c, and then will note the value of b and c in terms of a and common ratio to create a relation in a, b, c and then will find the required answer with help of those equations.
Complete step by step answer:
Given data: a, b, c are in G.P.
From the given data i.e. a, b, c are in G.P., we can say that the common ratio will remain the same
$
\dfrac{{\text{b}}}{{\text{a}}}{\text{ = }}\dfrac{{\text{c}}}{{\text{b}}}..............{\text{(i)}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = ac}}.........{\text{(ii)}} \\
$
Let the common ratio be ‘r’
$\therefore {\text{b = ar}}$
Squaring both sides of the above equation
$
{{\text{b}}^{\text{2}}}{\text{ = }}{\left( {{\text{ar}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{2}}} \\
$
Also,${\text{c = a}}{{\text{r}}^{\text{2}}}$
Squaring both sides of the above equation
$
{{\text{c}}^{\text{2}}}{\text{ = }}{\left( {{\text{a}}{{\text{r}}^{\text{2}}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{c}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{4}}} \\
$
From the value of ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ we can see that they are in G.P. with a common ratio of ${\text{'}}{{\text{r}}^{\text{2}}}{\text{'}}$
Common ratio=$\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{c}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = }}{{\text{r}}^{\text{2}}}$
Therefore, option(A) is correct
Note: We can also verify our solution with the help of an example let say 2,4,8 where
a=2
b=4
c=8
for option(A) ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$=${\text{4,16,64}}$
since $\dfrac{{{\text{16}}}}{{\text{4}}}{\text{ = }}\dfrac{{{\text{64}}}}{{{\text{16}}}}{\text{ = 4}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$are in G.P.
(A)${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ are in G.P.
Therefore option (A) is correct
for option(B) ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$=${{\text{2}}^{\text{2}}}{\text{(4 + 8),}}{{\text{8}}^{\text{2}}}{\text{(2 + 4),}}{{\text{4}}^{\text{2}}}{\text{(2 + 8)}}$
${\text{48,386,160}}$
since $\dfrac{{{\text{386}}}}{{{\text{48}}}}{\text{ = }}\dfrac{{{\text{193}}}}{{{\text{24}}}} \ne \dfrac{{{\text{160}}}}{{{\text{386}}}}{\text{ = }}\dfrac{{{\text{80}}}}{{{\text{193}}}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$are not in G.P.
for option(C) $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$=$\dfrac{{\text{2}}}{{{\text{4 + 8}}}}{\text{,}}\dfrac{{\text{4}}}{{{\text{8 + 2}}}}{\text{,}}\dfrac{{\text{8}}}{{{\text{2 + 4}}}}$
$\dfrac{{\text{1}}}{{\text{6}}}{\text{,}}\dfrac{{\text{2}}}{{\text{5}}}{\text{,}}\dfrac{{\text{4}}}{{\text{3}}}$
since $\dfrac{{\dfrac{{\text{2}}}{{\text{5}}}}}{{\dfrac{{\text{1}}}{{\text{6}}}}}{\text{ = }}\dfrac{{{\text{12}}}}{{\text{5}}} \ne \dfrac{{\dfrac{{\text{4}}}{{\text{3}}}}}{{\dfrac{{\text{2}}}{{\text{5}}}}}{\text{ = }}\dfrac{{{\text{10}}}}{{\text{3}}}$
therefore, $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$are not in G.P.
Complete step by step answer:
Given data: a, b, c are in G.P.
From the given data i.e. a, b, c are in G.P., we can say that the common ratio will remain the same
$
\dfrac{{\text{b}}}{{\text{a}}}{\text{ = }}\dfrac{{\text{c}}}{{\text{b}}}..............{\text{(i)}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = ac}}.........{\text{(ii)}} \\
$
Let the common ratio be ‘r’
$\therefore {\text{b = ar}}$
Squaring both sides of the above equation
$
{{\text{b}}^{\text{2}}}{\text{ = }}{\left( {{\text{ar}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{2}}} \\
$
Also,${\text{c = a}}{{\text{r}}^{\text{2}}}$
Squaring both sides of the above equation
$
{{\text{c}}^{\text{2}}}{\text{ = }}{\left( {{\text{a}}{{\text{r}}^{\text{2}}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{c}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{4}}} \\
$
From the value of ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ we can see that they are in G.P. with a common ratio of ${\text{'}}{{\text{r}}^{\text{2}}}{\text{'}}$
Common ratio=$\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{c}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = }}{{\text{r}}^{\text{2}}}$
Therefore, option(A) is correct
Note: We can also verify our solution with the help of an example let say 2,4,8 where
a=2
b=4
c=8
for option(A) ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$=${\text{4,16,64}}$
since $\dfrac{{{\text{16}}}}{{\text{4}}}{\text{ = }}\dfrac{{{\text{64}}}}{{{\text{16}}}}{\text{ = 4}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$are in G.P.
(A)${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ are in G.P.
Therefore option (A) is correct
for option(B) ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$=${{\text{2}}^{\text{2}}}{\text{(4 + 8),}}{{\text{8}}^{\text{2}}}{\text{(2 + 4),}}{{\text{4}}^{\text{2}}}{\text{(2 + 8)}}$
${\text{48,386,160}}$
since $\dfrac{{{\text{386}}}}{{{\text{48}}}}{\text{ = }}\dfrac{{{\text{193}}}}{{{\text{24}}}} \ne \dfrac{{{\text{160}}}}{{{\text{386}}}}{\text{ = }}\dfrac{{{\text{80}}}}{{{\text{193}}}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$are not in G.P.
for option(C) $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$=$\dfrac{{\text{2}}}{{{\text{4 + 8}}}}{\text{,}}\dfrac{{\text{4}}}{{{\text{8 + 2}}}}{\text{,}}\dfrac{{\text{8}}}{{{\text{2 + 4}}}}$
$\dfrac{{\text{1}}}{{\text{6}}}{\text{,}}\dfrac{{\text{2}}}{{\text{5}}}{\text{,}}\dfrac{{\text{4}}}{{\text{3}}}$
since $\dfrac{{\dfrac{{\text{2}}}{{\text{5}}}}}{{\dfrac{{\text{1}}}{{\text{6}}}}}{\text{ = }}\dfrac{{{\text{12}}}}{{\text{5}}} \ne \dfrac{{\dfrac{{\text{4}}}{{\text{3}}}}}{{\dfrac{{\text{2}}}{{\text{5}}}}}{\text{ = }}\dfrac{{{\text{10}}}}{{\text{3}}}$
therefore, $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$are not in G.P.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

