Answer
Verified
445.5k+ views
Hint: We’ll first write the conditional equation for a, b, c, and then will note the value of b and c in terms of a and common ratio to create a relation in a, b, c and then will find the required answer with help of those equations.
Complete step by step answer:
Given data: a, b, c are in G.P.
From the given data i.e. a, b, c are in G.P., we can say that the common ratio will remain the same
$
\dfrac{{\text{b}}}{{\text{a}}}{\text{ = }}\dfrac{{\text{c}}}{{\text{b}}}..............{\text{(i)}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = ac}}.........{\text{(ii)}} \\
$
Let the common ratio be ‘r’
$\therefore {\text{b = ar}}$
Squaring both sides of the above equation
$
{{\text{b}}^{\text{2}}}{\text{ = }}{\left( {{\text{ar}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{2}}} \\
$
Also,${\text{c = a}}{{\text{r}}^{\text{2}}}$
Squaring both sides of the above equation
$
{{\text{c}}^{\text{2}}}{\text{ = }}{\left( {{\text{a}}{{\text{r}}^{\text{2}}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{c}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{4}}} \\
$
From the value of ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ we can see that they are in G.P. with a common ratio of ${\text{'}}{{\text{r}}^{\text{2}}}{\text{'}}$
Common ratio=$\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{c}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = }}{{\text{r}}^{\text{2}}}$
Therefore, option(A) is correct
Note: We can also verify our solution with the help of an example let say 2,4,8 where
a=2
b=4
c=8
for option(A) ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$=${\text{4,16,64}}$
since $\dfrac{{{\text{16}}}}{{\text{4}}}{\text{ = }}\dfrac{{{\text{64}}}}{{{\text{16}}}}{\text{ = 4}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$are in G.P.
(A)${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ are in G.P.
Therefore option (A) is correct
for option(B) ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$=${{\text{2}}^{\text{2}}}{\text{(4 + 8),}}{{\text{8}}^{\text{2}}}{\text{(2 + 4),}}{{\text{4}}^{\text{2}}}{\text{(2 + 8)}}$
${\text{48,386,160}}$
since $\dfrac{{{\text{386}}}}{{{\text{48}}}}{\text{ = }}\dfrac{{{\text{193}}}}{{{\text{24}}}} \ne \dfrac{{{\text{160}}}}{{{\text{386}}}}{\text{ = }}\dfrac{{{\text{80}}}}{{{\text{193}}}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$are not in G.P.
for option(C) $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$=$\dfrac{{\text{2}}}{{{\text{4 + 8}}}}{\text{,}}\dfrac{{\text{4}}}{{{\text{8 + 2}}}}{\text{,}}\dfrac{{\text{8}}}{{{\text{2 + 4}}}}$
$\dfrac{{\text{1}}}{{\text{6}}}{\text{,}}\dfrac{{\text{2}}}{{\text{5}}}{\text{,}}\dfrac{{\text{4}}}{{\text{3}}}$
since $\dfrac{{\dfrac{{\text{2}}}{{\text{5}}}}}{{\dfrac{{\text{1}}}{{\text{6}}}}}{\text{ = }}\dfrac{{{\text{12}}}}{{\text{5}}} \ne \dfrac{{\dfrac{{\text{4}}}{{\text{3}}}}}{{\dfrac{{\text{2}}}{{\text{5}}}}}{\text{ = }}\dfrac{{{\text{10}}}}{{\text{3}}}$
therefore, $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$are not in G.P.
Complete step by step answer:
Given data: a, b, c are in G.P.
From the given data i.e. a, b, c are in G.P., we can say that the common ratio will remain the same
$
\dfrac{{\text{b}}}{{\text{a}}}{\text{ = }}\dfrac{{\text{c}}}{{\text{b}}}..............{\text{(i)}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = ac}}.........{\text{(ii)}} \\
$
Let the common ratio be ‘r’
$\therefore {\text{b = ar}}$
Squaring both sides of the above equation
$
{{\text{b}}^{\text{2}}}{\text{ = }}{\left( {{\text{ar}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{2}}} \\
$
Also,${\text{c = a}}{{\text{r}}^{\text{2}}}$
Squaring both sides of the above equation
$
{{\text{c}}^{\text{2}}}{\text{ = }}{\left( {{\text{a}}{{\text{r}}^{\text{2}}}} \right)^{\text{2}}} \\
\Rightarrow {{\text{c}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{4}}} \\
$
From the value of ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ we can see that they are in G.P. with a common ratio of ${\text{'}}{{\text{r}}^{\text{2}}}{\text{'}}$
Common ratio=$\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{c}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = }}{{\text{r}}^{\text{2}}}$
Therefore, option(A) is correct
Note: We can also verify our solution with the help of an example let say 2,4,8 where
a=2
b=4
c=8
for option(A) ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$=${\text{4,16,64}}$
since $\dfrac{{{\text{16}}}}{{\text{4}}}{\text{ = }}\dfrac{{{\text{64}}}}{{{\text{16}}}}{\text{ = 4}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$are in G.P.
(A)${{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}$ are in G.P.
Therefore option (A) is correct
for option(B) ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$=${{\text{2}}^{\text{2}}}{\text{(4 + 8),}}{{\text{8}}^{\text{2}}}{\text{(2 + 4),}}{{\text{4}}^{\text{2}}}{\text{(2 + 8)}}$
${\text{48,386,160}}$
since $\dfrac{{{\text{386}}}}{{{\text{48}}}}{\text{ = }}\dfrac{{{\text{193}}}}{{{\text{24}}}} \ne \dfrac{{{\text{160}}}}{{{\text{386}}}}{\text{ = }}\dfrac{{{\text{80}}}}{{{\text{193}}}}$
therefore, ${{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}$are not in G.P.
for option(C) $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$=$\dfrac{{\text{2}}}{{{\text{4 + 8}}}}{\text{,}}\dfrac{{\text{4}}}{{{\text{8 + 2}}}}{\text{,}}\dfrac{{\text{8}}}{{{\text{2 + 4}}}}$
$\dfrac{{\text{1}}}{{\text{6}}}{\text{,}}\dfrac{{\text{2}}}{{\text{5}}}{\text{,}}\dfrac{{\text{4}}}{{\text{3}}}$
since $\dfrac{{\dfrac{{\text{2}}}{{\text{5}}}}}{{\dfrac{{\text{1}}}{{\text{6}}}}}{\text{ = }}\dfrac{{{\text{12}}}}{{\text{5}}} \ne \dfrac{{\dfrac{{\text{4}}}{{\text{3}}}}}{{\dfrac{{\text{2}}}{{\text{5}}}}}{\text{ = }}\dfrac{{{\text{10}}}}{{\text{3}}}$
therefore, $\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}$are not in G.P.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE