
If a, b, c are in G.P. and ${{\text{a}}^{\text{x}}}$=${{\text{b}}^{\text{y}}}$=${{\text{c}}^{\text{z}}}$, prove that $\dfrac{1}{{\text{x}}} + \dfrac{1}{{\text{z}}} = \dfrac{2}{{\text{y}}}$
Answer
473.7k+ views
Hint: We know that in G.P. there is a common ratio between the consecutive terms of the series. So we can write b=ar and c=br and also${\text{c = a}}{{\text{r}}^{\text{2}}}$. Now put these values in ${{\text{a}}^{\text{x}}}$=${{\text{b}}^{\text{y}}}$=${{\text{c}}^{\text{z}}}$ and solve. Then take two terms and simplify them to get the values in base a and r on either side. Then take two different terms and solve in the same manner. Compare the results and equate the terms having the same base. Solve it to get the answer.
Complete step-by-step answer:
Given, a, b, c are in G.P. so the terms have a common ratio r which means-
$ \Rightarrow \dfrac{{\text{b}}}{{\text{a}}} = {\text{r}}$ and $\dfrac{{\text{c}}}{{\text{b}}} = {\text{r}}$
Then we can write it as-
$ \Rightarrow $ b=ar and c=br
But since b=ar so we can write c as-
$ \Rightarrow {\text{c = a}}{{\text{r}}^{\text{2}}}$
Also given, ${{\text{a}}^{\text{x}}}$=${{\text{b}}^{\text{y}}}$=${{\text{c}}^{\text{z}}}$ -- (i)
Now, we have to prove that$\dfrac{1}{{\text{x}}} + \dfrac{1}{{\text{z}}} = \dfrac{2}{{\text{y}}}$
So on putting the values of b and c in eq. (i), we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}} = {\left( {{\text{ar}}} \right)^{\text{y}}} = {\left( {{\text{a}}{{\text{r}}^2}} \right)^{\text{z}}}\]
On solving, we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{y}}}{{\text{r}}^{\text{y}}} = {{\text{a}}^{\text{z}}}{{\text{r}}^2}^{\text{z}}\]--- (ii)
On taking the first and second term, we get-
$ \Rightarrow {{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{y}}}{{\text{r}}^{\text{y}}}$
On rearrangement, we get-
$ \Rightarrow \dfrac{{{{\text{a}}^{\text{x}}}}}{{{{\text{a}}^{\text{y}}}}} = {{\text{r}}^{\text{y}}}$
On solving, we get-
$ \Rightarrow {{\text{a}}^{\text{x}}}{{\text{a}}^{{\text{ - y}}}} = {{\text{r}}^{\text{y}}}$
Now, we know if the base of two multiplicative terms is the same, the powers of the base are added and the base remains the same. So we get-
$ \Rightarrow {{\text{a}}^{\text{x}}}^{{\text{ - y}}} = {{\text{r}}^{\text{y}}}$-- (iii)
On taking the first and third term, we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{z}}}{{\text{r}}^2}^{\text{z}}\]
On rearrangement, we get-
\[ \Rightarrow \dfrac{{{{\text{a}}^{\text{x}}}}}{{{{\text{a}}^{\text{z}}}}} = {{\text{r}}^2}^{\text{z}}\]
On solving, we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}}{{\text{a}}^{{\text{ - z}}}} = {{\text{r}}^2}^{\text{z}}\]
We know if the base of two multiplicative terms is the same, the powers of the base are added. So we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}}^{{\text{ - z}}} = {{\text{r}}^2}^{\text{z}}\]-- (iv)
Now, since the first, second, and third terms are equal in eq. (ii), then eq. (iii) and (iv) should also be equal to each other. So on comparing the left-hand side part of eq. (iii) and (iv), we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}}^{{\text{ - y}}} = {{\text{a}}^{\text{x}}}^{{\text{ - z}}}\]
Since the base is the same, so the powers will also be equal. So we get-
\[ \Rightarrow {\text{x - y}} = {\text{x - z}}\]-- (v)
Now, on comparing the right-hand side part of eq. (iii) and (iv), we get-
\[ \Rightarrow {{\text{r}}^{\text{y}}} = {{\text{r}}^2}^{\text{z}}\]
Since the base is the same, so the powers will also be equal. So we get-
$ \Rightarrow {\text{y = 2z}}$-- (vi)
On dividing eq. (v) by eq. (vi), we get-
\[ \Rightarrow \dfrac{{{\text{x - y}}}}{{\text{y}}} = \dfrac{{{\text{x - z}}}}{{{\text{2z}}}}\]
On cross-multiplication, we get-
$ \Rightarrow {\text{2xz - 2yz = xy - yz}}$
On separating common variables, we get-
$ \Rightarrow {\text{2xz = xy + 2yz - yz}}$
On solving, we get-
$ \Rightarrow {\text{2xz = xy + yz}}$
Now on dividing both sides by xyz, we get-
$ \Rightarrow \dfrac{{{\text{2xz}}}}{{{\text{xyz}}}}{\text{ = }}\dfrac{{{\text{xy + yz}}}}{{{\text{xyz}}}}$
On solving, we get-
$ \Rightarrow \dfrac{{\text{2}}}{{\text{y}}}{\text{ = }}\dfrac{1}{{\text{z}}} + \dfrac{1}{{\text{x}}}$
Hence proved
Note: Here, we have taken the first and seconds terms and first and third terms in eq. (ii), so that the calculations become easy and we can easily prove the equation given in the question, if we take other terms then the equation we will obtain will become complex and it will take more time to solve.
Complete step-by-step answer:
Given, a, b, c are in G.P. so the terms have a common ratio r which means-
$ \Rightarrow \dfrac{{\text{b}}}{{\text{a}}} = {\text{r}}$ and $\dfrac{{\text{c}}}{{\text{b}}} = {\text{r}}$
Then we can write it as-
$ \Rightarrow $ b=ar and c=br
But since b=ar so we can write c as-
$ \Rightarrow {\text{c = a}}{{\text{r}}^{\text{2}}}$
Also given, ${{\text{a}}^{\text{x}}}$=${{\text{b}}^{\text{y}}}$=${{\text{c}}^{\text{z}}}$ -- (i)
Now, we have to prove that$\dfrac{1}{{\text{x}}} + \dfrac{1}{{\text{z}}} = \dfrac{2}{{\text{y}}}$
So on putting the values of b and c in eq. (i), we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}} = {\left( {{\text{ar}}} \right)^{\text{y}}} = {\left( {{\text{a}}{{\text{r}}^2}} \right)^{\text{z}}}\]
On solving, we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{y}}}{{\text{r}}^{\text{y}}} = {{\text{a}}^{\text{z}}}{{\text{r}}^2}^{\text{z}}\]--- (ii)
On taking the first and second term, we get-
$ \Rightarrow {{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{y}}}{{\text{r}}^{\text{y}}}$
On rearrangement, we get-
$ \Rightarrow \dfrac{{{{\text{a}}^{\text{x}}}}}{{{{\text{a}}^{\text{y}}}}} = {{\text{r}}^{\text{y}}}$
On solving, we get-
$ \Rightarrow {{\text{a}}^{\text{x}}}{{\text{a}}^{{\text{ - y}}}} = {{\text{r}}^{\text{y}}}$
Now, we know if the base of two multiplicative terms is the same, the powers of the base are added and the base remains the same. So we get-
$ \Rightarrow {{\text{a}}^{\text{x}}}^{{\text{ - y}}} = {{\text{r}}^{\text{y}}}$-- (iii)
On taking the first and third term, we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{z}}}{{\text{r}}^2}^{\text{z}}\]
On rearrangement, we get-
\[ \Rightarrow \dfrac{{{{\text{a}}^{\text{x}}}}}{{{{\text{a}}^{\text{z}}}}} = {{\text{r}}^2}^{\text{z}}\]
On solving, we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}}{{\text{a}}^{{\text{ - z}}}} = {{\text{r}}^2}^{\text{z}}\]
We know if the base of two multiplicative terms is the same, the powers of the base are added. So we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}}^{{\text{ - z}}} = {{\text{r}}^2}^{\text{z}}\]-- (iv)
Now, since the first, second, and third terms are equal in eq. (ii), then eq. (iii) and (iv) should also be equal to each other. So on comparing the left-hand side part of eq. (iii) and (iv), we get-
\[ \Rightarrow {{\text{a}}^{\text{x}}}^{{\text{ - y}}} = {{\text{a}}^{\text{x}}}^{{\text{ - z}}}\]
Since the base is the same, so the powers will also be equal. So we get-
\[ \Rightarrow {\text{x - y}} = {\text{x - z}}\]-- (v)
Now, on comparing the right-hand side part of eq. (iii) and (iv), we get-
\[ \Rightarrow {{\text{r}}^{\text{y}}} = {{\text{r}}^2}^{\text{z}}\]
Since the base is the same, so the powers will also be equal. So we get-
$ \Rightarrow {\text{y = 2z}}$-- (vi)
On dividing eq. (v) by eq. (vi), we get-
\[ \Rightarrow \dfrac{{{\text{x - y}}}}{{\text{y}}} = \dfrac{{{\text{x - z}}}}{{{\text{2z}}}}\]
On cross-multiplication, we get-
$ \Rightarrow {\text{2xz - 2yz = xy - yz}}$
On separating common variables, we get-
$ \Rightarrow {\text{2xz = xy + 2yz - yz}}$
On solving, we get-
$ \Rightarrow {\text{2xz = xy + yz}}$
Now on dividing both sides by xyz, we get-
$ \Rightarrow \dfrac{{{\text{2xz}}}}{{{\text{xyz}}}}{\text{ = }}\dfrac{{{\text{xy + yz}}}}{{{\text{xyz}}}}$
On solving, we get-
$ \Rightarrow \dfrac{{\text{2}}}{{\text{y}}}{\text{ = }}\dfrac{1}{{\text{z}}} + \dfrac{1}{{\text{x}}}$
Hence proved
Note: Here, we have taken the first and seconds terms and first and third terms in eq. (ii), so that the calculations become easy and we can easily prove the equation given in the question, if we take other terms then the equation we will obtain will become complex and it will take more time to solve.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
