
If A, B, C, are acute angles and $\sin A = \cos A$ and $\sin B\cos C + \cos B\sin C = \sin A$ then tan A is equal to ?
(A) $\tan B + \tan C$
(B) $2(\tan B + \tan C)$
(C) $\tan B + 2\tan C$
(D) $2\tan B + \tan C$
Answer
576.3k+ views
Hint: 1. Trigonometric ratios of $(90^\circ - \theta )$
$\sin (90^\circ - \theta ) = \cos \theta $
$\cos (90^\circ - \theta ) = \sin \theta $
$\tan (90^\circ - \theta ) = \cot \theta $
$\sec (90^\circ - \theta ) = \csc \theta $
$\csc (90^\circ - \theta ) = \sec \theta $
$\cot (90^\circ - \theta ) = \tan \theta $
2. Addition and subtraction of angles in sin
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\sin (A - B) = \sin A\cos B - \cos A\sin B$
Complete step-by-step answer:
It is given that
1. $\sin A = \cos B$
2. $\sin B\cos C + \cos B\sin C = sinA$
Since $\sin A = \cos B$
Then $\sin A = \sin \left( {\dfrac{\pi }{2} - B} \right)$ $\left( {\because \sin (90^\circ - \theta ) = \cos \theta } \right)$
So, $A = \dfrac{\pi }{2} - B$
Or $A + B = \dfrac{\pi }{2}$ .….(1)
Now, we know that
$\sin (a + b) = \sin a \times \cos b + \cos a \times \sin b$
So, by using this formula we can say that
The given equation
$\sin B\cos C + \cos B\sin C = \sin (B + C) = \sin A$
Or, $\sin (B + C) = \sin A$
Taking tangent both side
$\tan (B + C) = \tan A$
or $\tan A = \tan (B + C)$
$\tan A = \dfrac{{\tan B + \tan C}}{{1 - \tan B\tan C}}$
$\tan A - \tan A\tan B\tan C = \tan B + \tan C$
From equation (1) $\left( {A = \dfrac{\pi }{2} - B} \right)$
$\tan A - \tan \left( {\dfrac{\pi }{2} - B} \right)\tan B\tan C = \tan B + \tan C$
$\tan A - \cot B.\tan B.\tan C = \tan B + \tan C$
$\tan A - \tan C = \tan B + \tan C$
Or, $\tan A = \tan B + 2\tan C$
Therefore, option C is correct option i.e., $\tan A = \tan B + 2\tan C$
So, the correct answer is “Option C”.
Note: In solution part we cut off tan B from cot B because they both are inverse of each other
Or, $\tan B = \dfrac{1}{{\cot B}}$
Similarly try to remember all the reciprocal relations and other relations between trigonometric functions.
$\sin (90^\circ - \theta ) = \cos \theta $
$\cos (90^\circ - \theta ) = \sin \theta $
$\tan (90^\circ - \theta ) = \cot \theta $
$\sec (90^\circ - \theta ) = \csc \theta $
$\csc (90^\circ - \theta ) = \sec \theta $
$\cot (90^\circ - \theta ) = \tan \theta $
2. Addition and subtraction of angles in sin
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\sin (A - B) = \sin A\cos B - \cos A\sin B$
Complete step-by-step answer:
It is given that
1. $\sin A = \cos B$
2. $\sin B\cos C + \cos B\sin C = sinA$
Since $\sin A = \cos B$
Then $\sin A = \sin \left( {\dfrac{\pi }{2} - B} \right)$ $\left( {\because \sin (90^\circ - \theta ) = \cos \theta } \right)$
So, $A = \dfrac{\pi }{2} - B$
Or $A + B = \dfrac{\pi }{2}$ .….(1)
Now, we know that
$\sin (a + b) = \sin a \times \cos b + \cos a \times \sin b$
So, by using this formula we can say that
The given equation
$\sin B\cos C + \cos B\sin C = \sin (B + C) = \sin A$
Or, $\sin (B + C) = \sin A$
Taking tangent both side
$\tan (B + C) = \tan A$
or $\tan A = \tan (B + C)$
$\tan A = \dfrac{{\tan B + \tan C}}{{1 - \tan B\tan C}}$
$\tan A - \tan A\tan B\tan C = \tan B + \tan C$
From equation (1) $\left( {A = \dfrac{\pi }{2} - B} \right)$
$\tan A - \tan \left( {\dfrac{\pi }{2} - B} \right)\tan B\tan C = \tan B + \tan C$
$\tan A - \cot B.\tan B.\tan C = \tan B + \tan C$
$\tan A - \tan C = \tan B + \tan C$
Or, $\tan A = \tan B + 2\tan C$
Therefore, option C is correct option i.e., $\tan A = \tan B + 2\tan C$
So, the correct answer is “Option C”.
Note: In solution part we cut off tan B from cot B because they both are inverse of each other
Or, $\tan B = \dfrac{1}{{\cot B}}$
Similarly try to remember all the reciprocal relations and other relations between trigonometric functions.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

