
If a, b and c are non-coplanar vectors then,
\[-\overrightarrow{a}+4\overrightarrow{b}-3\overrightarrow{c}\], \[3\overrightarrow{a}+2\overrightarrow{b}-5\overrightarrow{c}\], \[-3\overrightarrow{a}+8\overrightarrow{b}-5\overrightarrow{c}\], \[-3\overrightarrow{a}+2\overrightarrow{b}+\overrightarrow{c}\] are collinear.
(a) True
(b) False
Answer
613.2k+ views
Hint: First of all take the first 3 vectors and prove their determinant to be zero and then take the next 3 vectors and prove their determinant to be zero, which means the first 3 and the last 3 vectors are collinear to each other. So, we can say that all 4 are collinear to each other.
Complete step-by-step answer:
First of all, we are given that \[\overrightarrow{a}\], \[\overrightarrow{b}\] and \[\overrightarrow{c}\] are non-coplanar. Also, we are given 4 vectors formed by combination of \[\overrightarrow{a}\], \[\overrightarrow{b}\] and \[\overrightarrow{c}\] and we have to check if they are collinear or not. First of all, let us consider 4 vectors as,
\[\overrightarrow{P}=-\overrightarrow{a}+4\overrightarrow{b}-3\overrightarrow{c}\]
\[\overrightarrow{Q}=3\overrightarrow{a}+2\overrightarrow{b}-5\overrightarrow{c}\]
\[\overrightarrow{R}=-3\overrightarrow{a}+8\overrightarrow{b}-5\overrightarrow{c}\]
\[\overrightarrow{S}=-3\overrightarrow{a}+2\overrightarrow{b}+\overrightarrow{c}\]
We know that if three vectors are collinear, their scalar product is zero. So, let us check for the vectors \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\]. If \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\] are collinear vectors, then we get,
\[\left[ \overrightarrow{P}\text{ }\overrightarrow{Q}\text{ }\overrightarrow{R} \right]=0\]
By substituting the values of \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\], we get,
\[\left[ \overrightarrow{P}\text{ }\overrightarrow{Q}\text{ }\overrightarrow{R} \right]=\left|
\begin{matrix}
-1 & 4 & -3 \\
3 & 2 & -5 \\
-3 & 8 & -5 \\
\end{matrix} \right|....\left( i \right)\]
We know that
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-gf \right)+c\left( dh-ge \right)\]
So, we get,
\[\left| \begin{matrix}
-1 & 4 & -3 \\
3 & 2 & -5 \\
-3 & 8 & -5 \\
\end{matrix} \right|=-1\left( -10+40 \right)-4\left( -15-15 \right)-3\left( 24+6 \right)\]
\[=-1\left( +30 \right)-4\left( -30 \right)-3\left( -30 \right)\]
\[=-30+120-90\]
\[=-120+120\]
= 0
So, we get, \[\left[ \overrightarrow{P}\text{ }\overrightarrow{Q}\text{ }\overrightarrow{R} \right]=0\]. Hence, \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\] are collinear vectors.
Now let us check for vectors \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\]. We know that \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear if
\[\left[ \overrightarrow{Q}\text{ }\overrightarrow{R}\text{ }\overrightarrow{S} \right]=0\]
By substituting the values of \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\], we get,
\[\left[ \overrightarrow{Q}\text{ }\overrightarrow{R}\text{ }\overrightarrow{S} \right]=\left|
\begin{matrix}
3 & 2 & -5 \\
-3 & 8 & -5 \\
-3 & 2 & 1 \\
\end{matrix} \right|\]
\[=3\left( 8+10 \right)-2\left( -3-15 \right)-5\left( -6+24 \right)\]
\[=3\left( 18 \right)+2\left( 18 \right)-5\left( 18 \right)\]
\[=54+36-90\]
\[=90-90\]
= 0
So, we get, \[\left[ \overrightarrow{Q}\text{ }\overrightarrow{R}\text{ }\overrightarrow{S} \right]=0\]. Hence, \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear vectors.
Now, we have proved that \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\] and \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear vectors. Hence, we can say that all four vectors \[\overrightarrow{P},\overrightarrow{Q}\text{,}\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear. So, the statement given in the question is true.
Note: In this question, some students make this mistake of assuming \[\overrightarrow{a},\overrightarrow{b}\text{ and }\overrightarrow{c}\] as points and further assuming \[\overrightarrow{P},\overrightarrow{Q}\text{,}\overrightarrow{R}\text{ and }\overrightarrow{S}\] as points and trying to prove them collinear by equating \[\overrightarrow{PQ}=\lambda \left( \overrightarrow{QR} \right)\] or \[\overrightarrow{QR}=\lambda \left( \overrightarrow{RS} \right)\] which is wrong. Here, it is clearly given that \[\overrightarrow{P},\overrightarrow{Q}\text{,}\overrightarrow{R}\text{ and }\overrightarrow{S}\] and \[\overrightarrow{a},\overrightarrow{b}\text{ and }\overrightarrow{c}\] are vectors. So, we can’t use the above expression here as it is the only valid point.
Complete step-by-step answer:
First of all, we are given that \[\overrightarrow{a}\], \[\overrightarrow{b}\] and \[\overrightarrow{c}\] are non-coplanar. Also, we are given 4 vectors formed by combination of \[\overrightarrow{a}\], \[\overrightarrow{b}\] and \[\overrightarrow{c}\] and we have to check if they are collinear or not. First of all, let us consider 4 vectors as,
\[\overrightarrow{P}=-\overrightarrow{a}+4\overrightarrow{b}-3\overrightarrow{c}\]
\[\overrightarrow{Q}=3\overrightarrow{a}+2\overrightarrow{b}-5\overrightarrow{c}\]
\[\overrightarrow{R}=-3\overrightarrow{a}+8\overrightarrow{b}-5\overrightarrow{c}\]
\[\overrightarrow{S}=-3\overrightarrow{a}+2\overrightarrow{b}+\overrightarrow{c}\]
We know that if three vectors are collinear, their scalar product is zero. So, let us check for the vectors \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\]. If \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\] are collinear vectors, then we get,
\[\left[ \overrightarrow{P}\text{ }\overrightarrow{Q}\text{ }\overrightarrow{R} \right]=0\]
By substituting the values of \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\], we get,
\[\left[ \overrightarrow{P}\text{ }\overrightarrow{Q}\text{ }\overrightarrow{R} \right]=\left|
\begin{matrix}
-1 & 4 & -3 \\
3 & 2 & -5 \\
-3 & 8 & -5 \\
\end{matrix} \right|....\left( i \right)\]
We know that
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-gf \right)+c\left( dh-ge \right)\]
So, we get,
\[\left| \begin{matrix}
-1 & 4 & -3 \\
3 & 2 & -5 \\
-3 & 8 & -5 \\
\end{matrix} \right|=-1\left( -10+40 \right)-4\left( -15-15 \right)-3\left( 24+6 \right)\]
\[=-1\left( +30 \right)-4\left( -30 \right)-3\left( -30 \right)\]
\[=-30+120-90\]
\[=-120+120\]
= 0
So, we get, \[\left[ \overrightarrow{P}\text{ }\overrightarrow{Q}\text{ }\overrightarrow{R} \right]=0\]. Hence, \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\] are collinear vectors.
Now let us check for vectors \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\]. We know that \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear if
\[\left[ \overrightarrow{Q}\text{ }\overrightarrow{R}\text{ }\overrightarrow{S} \right]=0\]
By substituting the values of \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\], we get,
\[\left[ \overrightarrow{Q}\text{ }\overrightarrow{R}\text{ }\overrightarrow{S} \right]=\left|
\begin{matrix}
3 & 2 & -5 \\
-3 & 8 & -5 \\
-3 & 2 & 1 \\
\end{matrix} \right|\]
\[=3\left( 8+10 \right)-2\left( -3-15 \right)-5\left( -6+24 \right)\]
\[=3\left( 18 \right)+2\left( 18 \right)-5\left( 18 \right)\]
\[=54+36-90\]
\[=90-90\]
= 0
So, we get, \[\left[ \overrightarrow{Q}\text{ }\overrightarrow{R}\text{ }\overrightarrow{S} \right]=0\]. Hence, \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear vectors.
Now, we have proved that \[\overrightarrow{P},\overrightarrow{Q}\text{ and }\overrightarrow{R}\] and \[\overrightarrow{Q},\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear vectors. Hence, we can say that all four vectors \[\overrightarrow{P},\overrightarrow{Q}\text{,}\overrightarrow{R}\text{ and }\overrightarrow{S}\] are collinear. So, the statement given in the question is true.
Note: In this question, some students make this mistake of assuming \[\overrightarrow{a},\overrightarrow{b}\text{ and }\overrightarrow{c}\] as points and further assuming \[\overrightarrow{P},\overrightarrow{Q}\text{,}\overrightarrow{R}\text{ and }\overrightarrow{S}\] as points and trying to prove them collinear by equating \[\overrightarrow{PQ}=\lambda \left( \overrightarrow{QR} \right)\] or \[\overrightarrow{QR}=\lambda \left( \overrightarrow{RS} \right)\] which is wrong. Here, it is clearly given that \[\overrightarrow{P},\overrightarrow{Q}\text{,}\overrightarrow{R}\text{ and }\overrightarrow{S}\] and \[\overrightarrow{a},\overrightarrow{b}\text{ and }\overrightarrow{c}\] are vectors. So, we can’t use the above expression here as it is the only valid point.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

