If A: B = 6: 7 and B: C = 8: 9, then A: C is
This question has multiple correct options.
(a) 21: 16
(b) 16: 21
(c) 48: 63
(d) 63: 48
Answer
Verified
478.5k+ views
Hint: In order to solve this question, we convert the ratios into the fraction. Then we can get two-equation from two ratios. We are asked the ratio of A: C so we can eliminate B using these two equations and get the relation between A and C.
Complete step-by-step solution:
We are given two ratios.
The two ratios are A: B = 6: 7 and B: C = 8: 9,
We can write the ratios in form of a fraction.
Both of the ratios are given by $\dfrac{A}{B}=\dfrac{6}{7}$ and $\dfrac{B}{C}=\dfrac{8}{9}$ .
But need to find the ratio of A: C.
Therefore, our aim is to eliminate B.
We can cross multiply both the fractions and we can get two-equation.
Solving the first equation we get,
$\begin{align}
& \dfrac{A}{B}=\dfrac{6}{7} \\
& 7A=6B........................(i) \\
\end{align}$
Solving the second equation we get,
$\begin{align}
& \dfrac{B}{C}=\dfrac{8}{9} \\
& 9B=8C.................(ii) \\
\end{align}$
Let’s solve equation (i) to get the value of B in terms of A, we get,
$\begin{align}
& 7A=6B \\
& B=\dfrac{7A}{6}..................(iii) \\
\end{align}$
Substituting the value of the equation (iii) in equation (ii) we get,
$9\left( \dfrac{7A}{6} \right)=8C$
Solving this equation, we get,
$\begin{align}
& 3\left( \dfrac{7A}{2} \right)=8C \\
& 21A=16C \\
\end{align}$
As we are asked in the form of a ratio, we get,
$\dfrac{A}{C}=\dfrac{16}{21}$
Therefore, A : C = 16 : 21.
As we are given that there are multiple answers are correct, we need to try other options as well,
Let’s multiply both the sides by 3, we get,
$\dfrac{A}{C}=\dfrac{16\times 3}{21\times 3}=\dfrac{48}{63}$ .
Writing in the ratio form we get, A: C = 48: 63.
Hence, the correct options are (b) and (c).
Note: We can also solve this by first solving equation (ii) and then substituting in equation (i), the answer will stay the same. Also, we are told that there are multiple answers correct, so we need to check every option and where it simplifies to the option that we have arrived at.
Complete step-by-step solution:
We are given two ratios.
The two ratios are A: B = 6: 7 and B: C = 8: 9,
We can write the ratios in form of a fraction.
Both of the ratios are given by $\dfrac{A}{B}=\dfrac{6}{7}$ and $\dfrac{B}{C}=\dfrac{8}{9}$ .
But need to find the ratio of A: C.
Therefore, our aim is to eliminate B.
We can cross multiply both the fractions and we can get two-equation.
Solving the first equation we get,
$\begin{align}
& \dfrac{A}{B}=\dfrac{6}{7} \\
& 7A=6B........................(i) \\
\end{align}$
Solving the second equation we get,
$\begin{align}
& \dfrac{B}{C}=\dfrac{8}{9} \\
& 9B=8C.................(ii) \\
\end{align}$
Let’s solve equation (i) to get the value of B in terms of A, we get,
$\begin{align}
& 7A=6B \\
& B=\dfrac{7A}{6}..................(iii) \\
\end{align}$
Substituting the value of the equation (iii) in equation (ii) we get,
$9\left( \dfrac{7A}{6} \right)=8C$
Solving this equation, we get,
$\begin{align}
& 3\left( \dfrac{7A}{2} \right)=8C \\
& 21A=16C \\
\end{align}$
As we are asked in the form of a ratio, we get,
$\dfrac{A}{C}=\dfrac{16}{21}$
Therefore, A : C = 16 : 21.
As we are given that there are multiple answers are correct, we need to try other options as well,
Let’s multiply both the sides by 3, we get,
$\dfrac{A}{C}=\dfrac{16\times 3}{21\times 3}=\dfrac{48}{63}$ .
Writing in the ratio form we get, A: C = 48: 63.
Hence, the correct options are (b) and (c).
Note: We can also solve this by first solving equation (ii) and then substituting in equation (i), the answer will stay the same. Also, we are told that there are multiple answers correct, so we need to check every option and where it simplifies to the option that we have arrived at.
Recently Updated Pages
Class 8 Question and Answer - Your Ultimate Solutions Guide
Master Class 8 Social Science: Engaging Questions & Answers for Success
Master Class 8 Maths: Engaging Questions & Answers for Success
Master Class 8 English: Engaging Questions & Answers for Success
Master Class 8 Science: Engaging Questions & Answers for Success
Identify how many lines of symmetry drawn are there class 8 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science
Who commanded the Hector the first British trading class 8 social science CBSE