Answer
Verified
466.5k+ views
Hint: For this question we have to know that the $\left| {a + b} \right| = \sqrt {{{\left| a \right|}^2} + {{\left| b \right|}^2} + 2\left| a \right|\left| b \right|\cos \alpha } $ on squaring on both side we get ${\left| {a + b} \right|^2} = {\left| a \right|^2} + {\left| b \right|^2} + 2\left| a \right|\left| b \right|\cos \alpha $ and use of $\left| a \right| = 1$ , $\left| b \right| = 1$ and $\left| {a + b} \right| < 1$ we will find the range of the $\alpha $.
Complete step-by-step answer:
It is given that in the question that $\left| {a + b} \right| < 1$ and if we square on both side we get ;
${\left| {a + b} \right|^2} < 1$
Now we know that from the vectors property $\left| {a + b} \right| = \sqrt {{{\left| a \right|}^2} + {{\left| b \right|}^2} + 2\left| a \right|\left| b \right|\cos \alpha } $
Where $a$ and $b$ are the unit vectors and $\alpha $ is the angle between them .
Now that the for the unit vectors $\left| a \right| = 1$ , $\left| b \right| = 1$
On Squaring the above equation became : ${\left| {a + b} \right|^2} = {\left| a \right|^2} + {\left| b \right|^2} + 2\left| a \right|\left| b \right|\cos \alpha $
Put the values $\left| a \right| = 1$ $\left| b \right| = 1$
${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
From above it is proved that
${\left| {a + b} \right|^2} < 1$
$\left| {a + b} \right| < 1$
hence ${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
$2 + 2\cos \alpha < 1$
$2\cos \alpha < - 1$
$\cos \alpha < - \dfrac{1}{2}$
Hence the
$\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
It is given that the
\[\alpha \in \left[ {0,\pi } \right]\]
Now we know that the cosine is negative in the second quadrant and by taking the intersection from the given value we will find out that $\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
So, the correct answer is “Option B”.
Note: Always be careful on solving the trigonometric inequalities . If you have any problem in solving it then try to make the graph of the given trigonometric function . So it will become easier to solve .
The dot product tells you what amount of one vector goes in the direction of another .
Dot product of the perpendicular vector is always zero .
Cross product always gives the vector which is perpendicular to the both vectors and its direction would be determined by Right hand rule.
Complete step-by-step answer:
It is given that in the question that $\left| {a + b} \right| < 1$ and if we square on both side we get ;
${\left| {a + b} \right|^2} < 1$
Now we know that from the vectors property $\left| {a + b} \right| = \sqrt {{{\left| a \right|}^2} + {{\left| b \right|}^2} + 2\left| a \right|\left| b \right|\cos \alpha } $
Where $a$ and $b$ are the unit vectors and $\alpha $ is the angle between them .
Now that the for the unit vectors $\left| a \right| = 1$ , $\left| b \right| = 1$
On Squaring the above equation became : ${\left| {a + b} \right|^2} = {\left| a \right|^2} + {\left| b \right|^2} + 2\left| a \right|\left| b \right|\cos \alpha $
Put the values $\left| a \right| = 1$ $\left| b \right| = 1$
${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
From above it is proved that
${\left| {a + b} \right|^2} < 1$
$\left| {a + b} \right| < 1$
hence ${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
$2 + 2\cos \alpha < 1$
$2\cos \alpha < - 1$
$\cos \alpha < - \dfrac{1}{2}$
Hence the
$\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
It is given that the
\[\alpha \in \left[ {0,\pi } \right]\]
Now we know that the cosine is negative in the second quadrant and by taking the intersection from the given value we will find out that $\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
So, the correct answer is “Option B”.
Note: Always be careful on solving the trigonometric inequalities . If you have any problem in solving it then try to make the graph of the given trigonometric function . So it will become easier to solve .
The dot product tells you what amount of one vector goes in the direction of another .
Dot product of the perpendicular vector is always zero .
Cross product always gives the vector which is perpendicular to the both vectors and its direction would be determined by Right hand rule.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it