
If $A$ and $B$ are two sets, then $\left( {A \cap B} \right)'$ is equal to
A. $A' \cap B'$
B. $A' \cup B'$
C. $A \cap B$
D. $A \cup B$
Answer
511.8k+ views
Hint: Here in this problem, an incomplete statement is given. We need to complete the given incomplete statement. We all know De Morgan's laws that are often used in set theory. One of the statements given by De Morgan is the given incomplete statement. Using the law, we can able to complete the given statement.
Complete step by step answer:
Using De Morgan’s law, we have$\left( {A \cap B} \right)' = A' \cup B'$
We shall prove this statement.
Let $P = \left( {A \cap B} \right)'$ and $Q = A' \cup B'$
Let $x \in P$
Then, $x \in \left( {A \cap B} \right)'$
$ \Rightarrow x \notin \left( {A \cap B} \right)$
$ \Rightarrow x \notin A$ or$x \notin B$
$ \Rightarrow x \in A'$ or$x \in B'$
$ \Rightarrow x \in A' \cup B'$
$ \Rightarrow x \in Q$
Hence, we get$P \subset Q$ …………$\left( 1 \right)$
Now, let$y \in Q$
$ \Rightarrow y \in A' \cup B'$
$ \Rightarrow y \in A'$ or$y \in B'$
$ \Rightarrow y \notin A$ or$y \notin B$
\[\;\; \Rightarrow y \notin \left( {A \cap B} \right)\]
$ \Rightarrow y \in \left( {A \cap B} \right)'$
$ \Rightarrow y \in P$
Hence, we get$Q \subset P$ …………$\left( 2 \right)$
Now, we shall combine the first and second equations.
Thus, we get$P = Q$
That is$\left( {A \cap B} \right)' = A' \cup B'$
Let us consider the left-hand side$\left( {A \cap B} \right)'$.
Let us analyze the following Venn diagram.
This diagram shows$A \cap B$. The blue-colored area is the intersection of$A$ and$B$.
Now, let us analyze the following diagram.
This diagram shows$\left( {A \cap B} \right)'$ and the blue-colored area is$\left( {A \cap B} \right)'$.
Hence we got the required left-hand side expression.
Now, we get into the right-hand side expression$A' \cup B'$.
Now, let us analyze the following diagram.
This diagram shows$A'$ and the black-colored area is required$A'$.
Now, let us analyze the following diagram.
The above diagram shows\[B'\] and the black-colored area is required\[B'\].
Now, let us analyze the following diagram.
The above diagram shows$A' \cup B'$ and the blue-colored area is required\[B'\].
Hence we got the required left-hand side expression.
Therefore, we proved the statement $\left( {A \cap B} \right)' = A' \cup B'$using the Venn diagram.
So, the correct answer is “Option B”.
Note: Here we were asked to complete the famous theorem written by Demorgan. Since we know the de Morgan laws, we easily find the required answer. Also, we have proved this statement mathematically. The Venn-diagram representation will be easier to prove this statement. We all prefer pictorial representation. So, we have proved this statement using the Venn diagram too. Therefore, we proved the statement $\left( {A \cap B} \right)' = A' \cup B'$
Complete step by step answer:
Using De Morgan’s law, we have$\left( {A \cap B} \right)' = A' \cup B'$
We shall prove this statement.
Let $P = \left( {A \cap B} \right)'$ and $Q = A' \cup B'$
Let $x \in P$
Then, $x \in \left( {A \cap B} \right)'$
$ \Rightarrow x \notin \left( {A \cap B} \right)$
$ \Rightarrow x \notin A$ or$x \notin B$
$ \Rightarrow x \in A'$ or$x \in B'$
$ \Rightarrow x \in A' \cup B'$
$ \Rightarrow x \in Q$
Hence, we get$P \subset Q$ …………$\left( 1 \right)$
Now, let$y \in Q$
$ \Rightarrow y \in A' \cup B'$
$ \Rightarrow y \in A'$ or$y \in B'$
$ \Rightarrow y \notin A$ or$y \notin B$
\[\;\; \Rightarrow y \notin \left( {A \cap B} \right)\]
$ \Rightarrow y \in \left( {A \cap B} \right)'$
$ \Rightarrow y \in P$
Hence, we get$Q \subset P$ …………$\left( 2 \right)$
Now, we shall combine the first and second equations.
Thus, we get$P = Q$
That is$\left( {A \cap B} \right)' = A' \cup B'$
Let us consider the left-hand side$\left( {A \cap B} \right)'$.
Let us analyze the following Venn diagram.
This diagram shows$A \cap B$. The blue-colored area is the intersection of$A$ and$B$.
Now, let us analyze the following diagram.
This diagram shows$\left( {A \cap B} \right)'$ and the blue-colored area is$\left( {A \cap B} \right)'$.
Hence we got the required left-hand side expression.
Now, we get into the right-hand side expression$A' \cup B'$.
Now, let us analyze the following diagram.
This diagram shows$A'$ and the black-colored area is required$A'$.
Now, let us analyze the following diagram.
The above diagram shows\[B'\] and the black-colored area is required\[B'\].
Now, let us analyze the following diagram.
The above diagram shows$A' \cup B'$ and the blue-colored area is required\[B'\].
Hence we got the required left-hand side expression.
Therefore, we proved the statement $\left( {A \cap B} \right)' = A' \cup B'$using the Venn diagram.
So, the correct answer is “Option B”.
Note: Here we were asked to complete the famous theorem written by Demorgan. Since we know the de Morgan laws, we easily find the required answer. Also, we have proved this statement mathematically. The Venn-diagram representation will be easier to prove this statement. We all prefer pictorial representation. So, we have proved this statement using the Venn diagram too. Therefore, we proved the statement $\left( {A \cap B} \right)' = A' \cup B'$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

