
If A and B are two mutually exclusive events, then
(a) $P\left( A \right)\le P\left( \overline{B} \right)$
(b) $P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right)$
(c) $P\left( \overline{A}\cup \overline{B} \right)=0$
(d) $P\left( \overline{A}\cap B \right)=P\left( B \right)$
Answer
516.9k+ views
Hint: We have to verify each option. For mutually exclusive events, A and B, we know that $P\left( A\cap B \right)=0$ . We have to use $P\left( A\cup B \right)\le 1$ to verify option a. To verify option b, we will be using $P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A\cup B} \right)=1-P\left( A\cup B \right)$ . We have to use $P\left( \overline{A}\cup \overline{B} \right)=P\left( \overline{A\cap B} \right)=1-P\left( A\cap B \right)$ to verify option c . We have to apply the probability formulas including $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)$ , $P\left( A\cap B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cup B \right)$ , $P\left( \overline{A} \right)=1-P\left( A \right)$ , $P\left( \overline{B} \right)=1-P\left( B \right)$ and $P\left( \overline{A}\cup B \right)=P\left( \overline{A} \right)$ . Using these forms, we can verify option d.
Complete step by step solution:
We have to choose the correct options when A and B are mutually exclusive. We have to verify each option. Let us first verify the first option.
We know that $P\left( A\cup B \right)\le 1$
We also know that $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)...\left( i \right)$ . Let us substitute this in the above equation.
$\Rightarrow P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)\le 1...\left( ii \right)$
We know that when two events, say, A and B are mutually exclusive, then the probability of occurrence of both A and B will be 0.
$\Rightarrow P\left( A\cap B \right)=0...\left( iii \right)$
Let us substitute this in equation (ii).
$\begin{align}
& \Rightarrow P\left( A \right)+P\left( B \right)-0\le 1 \\
& \Rightarrow P\left( A \right)+P\left( B \right)\le 1 \\
\end{align}$
Let us take P(B) to the RHS.
$\Rightarrow P\left( A \right)\le 1-P\left( B \right)$
We know that $P\left( \overline{B} \right)=1-P\left( B \right)$ . Therefore, the above equation becomes
$\Rightarrow P\left( A \right)\le P\left( \overline{B} \right)$
Hence, option (a) is satisfied.
Now, let us verify the second option.
We know that $P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A\cup B} \right)=1-P\left( A\cup B \right)$
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-P\left( A\cup B \right)$
Let us substitute equation (i) in the above equation.
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \right]$
Using (iii), we can write the above equation as
$\begin{align}
& \Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right)-0 \right] \\
& \Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right) \right] \\
\end{align}$
Let us expand the RHS.
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-P\left( A \right)-P\left( B \right)$
We know that $P\left( \overline{A} \right)=1-P\left( A \right)$ . Let us substitute this in the above equation.
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right)$
We can see that option b is verified.
Let us check option c.
We know that $P\left( \overline{A}\cup \overline{B} \right)=P\left( \overline{A\cap B} \right)=1-P\left( A\cap B \right)$ .
Let us substitute (iii) in the above formula.
$\begin{align}
& \Rightarrow P\left( \overline{A}\cup \overline{B} \right)=1-0 \\
& \Rightarrow P\left( \overline{A}\cup \overline{B} \right)=1 \\
\end{align}$
Therefore, option c is incorrect.
Let us verify option d.
We can write $P\left( \overline{A}\cap B \right)$ as
$\Rightarrow P\left( \overline{A}\cap B \right)=P\left( \overline{A} \right)+P\left( B \right)-P\left( \overline{A}\cup B \right)...\left( iv \right)$
We can write $P\left( \overline{A}\cup B \right)=P\left( \overline{A} \right)$ .
Let us substitute this in equation (iv).
$\Rightarrow P\left( \overline{A}\cap B \right)=P\left( \overline{A} \right)+P\left( B \right)-P\left( \overline{A} \right)$
Let us solve the RHS.
$\Rightarrow P\left( \overline{A}\cap B \right)=P\left( B \right)$
Hence, option d is verified.
Hence, the correct options are (a),(b) and (d).
Note: Students must know the probability formulas to solve these questions. We can also solve this problem using a Venn diagram.
In the above figure, P(A) is shown in red colour and $P\left( \overline{B} \right)$ is shown in yellow colour including the shaded portion in A. We can see that $P\left( A \right)\le P\left( \overline{B} \right)$ . Hence option a is correct.
Let us check $P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right)$ .
The green colour is P(B) and $P\left( \overline{A} \right)$ is the violet colour including the shaded portion in B. $P\left( \overline{A}\cap \overline{B} \right)$ is the violet colour and $P\left( A\cap B \right)$ is the green part only (without shades) . Thus, when we subtract P(B) and $P\left( A\cap B \right)$ from $P\left( \overline{A} \right)$ , we will get $P\left( \overline{A}\cap \overline{B} \right)$ since $P\left( A\cap B \right)=0$ .
Hence, option b is correct.
Let us check $P\left( \overline{A}\cup \overline{B} \right)=0$ .
$P\left( \overline{A} \right)$ is the violet colour including the shaded portion in B. $P\left( \overline{B} \right)$ is the violet portion including the blue shaded portion in A. We will get $P\left( \overline{A}\cup \overline{B} \right)=1-P\left( A\cap B \right)=1-0=1$
Hence, option c is incorrect.
Let us check the option $P\left( \overline{A}\cap B \right)=P\left( B \right)$ .
We can see that the intersection of $\overline{A}$ and B is $P\left( B \right)-P\left( A\cap B \right)=P\left( B \right)-0=P\left( B \right)$ .
Hence, option d is correct.
Complete step by step solution:
We have to choose the correct options when A and B are mutually exclusive. We have to verify each option. Let us first verify the first option.
We know that $P\left( A\cup B \right)\le 1$
We also know that $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)...\left( i \right)$ . Let us substitute this in the above equation.
$\Rightarrow P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)\le 1...\left( ii \right)$
We know that when two events, say, A and B are mutually exclusive, then the probability of occurrence of both A and B will be 0.
$\Rightarrow P\left( A\cap B \right)=0...\left( iii \right)$
Let us substitute this in equation (ii).
$\begin{align}
& \Rightarrow P\left( A \right)+P\left( B \right)-0\le 1 \\
& \Rightarrow P\left( A \right)+P\left( B \right)\le 1 \\
\end{align}$
Let us take P(B) to the RHS.
$\Rightarrow P\left( A \right)\le 1-P\left( B \right)$
We know that $P\left( \overline{B} \right)=1-P\left( B \right)$ . Therefore, the above equation becomes
$\Rightarrow P\left( A \right)\le P\left( \overline{B} \right)$
Hence, option (a) is satisfied.
Now, let us verify the second option.
We know that $P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A\cup B} \right)=1-P\left( A\cup B \right)$
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-P\left( A\cup B \right)$
Let us substitute equation (i) in the above equation.
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \right]$
Using (iii), we can write the above equation as
$\begin{align}
& \Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right)-0 \right] \\
& \Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right) \right] \\
\end{align}$
Let us expand the RHS.
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-P\left( A \right)-P\left( B \right)$
We know that $P\left( \overline{A} \right)=1-P\left( A \right)$ . Let us substitute this in the above equation.
$\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right)$
We can see that option b is verified.
Let us check option c.
We know that $P\left( \overline{A}\cup \overline{B} \right)=P\left( \overline{A\cap B} \right)=1-P\left( A\cap B \right)$ .
Let us substitute (iii) in the above formula.
$\begin{align}
& \Rightarrow P\left( \overline{A}\cup \overline{B} \right)=1-0 \\
& \Rightarrow P\left( \overline{A}\cup \overline{B} \right)=1 \\
\end{align}$
Therefore, option c is incorrect.
Let us verify option d.
We can write $P\left( \overline{A}\cap B \right)$ as
$\Rightarrow P\left( \overline{A}\cap B \right)=P\left( \overline{A} \right)+P\left( B \right)-P\left( \overline{A}\cup B \right)...\left( iv \right)$
We can write $P\left( \overline{A}\cup B \right)=P\left( \overline{A} \right)$ .
Let us substitute this in equation (iv).
$\Rightarrow P\left( \overline{A}\cap B \right)=P\left( \overline{A} \right)+P\left( B \right)-P\left( \overline{A} \right)$
Let us solve the RHS.
$\Rightarrow P\left( \overline{A}\cap B \right)=P\left( B \right)$
Hence, option d is verified.
Hence, the correct options are (a),(b) and (d).
Note: Students must know the probability formulas to solve these questions. We can also solve this problem using a Venn diagram.
In the above figure, P(A) is shown in red colour and $P\left( \overline{B} \right)$ is shown in yellow colour including the shaded portion in A. We can see that $P\left( A \right)\le P\left( \overline{B} \right)$ . Hence option a is correct.
Let us check $P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right)$ .
The green colour is P(B) and $P\left( \overline{A} \right)$ is the violet colour including the shaded portion in B. $P\left( \overline{A}\cap \overline{B} \right)$ is the violet colour and $P\left( A\cap B \right)$ is the green part only (without shades) . Thus, when we subtract P(B) and $P\left( A\cap B \right)$ from $P\left( \overline{A} \right)$ , we will get $P\left( \overline{A}\cap \overline{B} \right)$ since $P\left( A\cap B \right)=0$ .
Hence, option b is correct.
Let us check $P\left( \overline{A}\cup \overline{B} \right)=0$ .
$P\left( \overline{A} \right)$ is the violet colour including the shaded portion in B. $P\left( \overline{B} \right)$ is the violet portion including the blue shaded portion in A. We will get $P\left( \overline{A}\cup \overline{B} \right)=1-P\left( A\cap B \right)=1-0=1$
Hence, option c is incorrect.
Let us check the option $P\left( \overline{A}\cap B \right)=P\left( B \right)$ .
We can see that the intersection of $\overline{A}$ and B is $P\left( B \right)-P\left( A\cap B \right)=P\left( B \right)-0=P\left( B \right)$ .
Hence, option d is correct.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

