
if a and b are the two vectors then the value of
\[(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b})\]
A- \[2(\overrightarrow{b}\times \overrightarrow{a})\]
B- \[-2(\overrightarrow{b}\times \overrightarrow{a})\]
C- \[(\overrightarrow{b}\times \overrightarrow{a})\]
D- \[(\overrightarrow{a}\times \overrightarrow{b})\]
Answer
564.3k+ views
Hint: Vectors can be multiplied with one other using two product rules- broadly dot product which gives a scalar result and cross-product which gives vector result. Here we are given two vectors and we need to find the cross product. We use the laws of vector algebra.
Step by step answer: The given two vectors are \[(\overrightarrow{a}+\overrightarrow{b})\]and \[(\overrightarrow{a}-\overrightarrow{b})\]
We need to find the cross product, so we use the laws of algebra.
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times (\overrightarrow{a}-\overrightarrow{b})+\overrightarrow{b}\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times \overrightarrow{a}-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-\overrightarrow{b}\times \overrightarrow{b} \\
\]
We know that cross product of a vector with itself gives zero,
\[\Rightarrow 0-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-0\]
\[=-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}\]
Also, vector product is not commutative, so using law of commutativity, we get,
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) =\overrightarrow{b}\times \overrightarrow{a}+\overrightarrow{b}\times \overrightarrow{a} \\
\Rightarrow 2\overrightarrow{(b}\times \overrightarrow{a}) \\
\]
\[\therefore \]the answer is \[2\overrightarrow{(b}\times \overrightarrow{a})\]
Hence, the correct option is (B).
Note: While taking either dot product or cross product we have to keep in mind we have to take the angle between the two original vectors.As vector multiplication is not commutative so take care while multiplying the vectors.
Step by step answer: The given two vectors are \[(\overrightarrow{a}+\overrightarrow{b})\]and \[(\overrightarrow{a}-\overrightarrow{b})\]
We need to find the cross product, so we use the laws of algebra.
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times (\overrightarrow{a}-\overrightarrow{b})+\overrightarrow{b}\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times \overrightarrow{a}-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-\overrightarrow{b}\times \overrightarrow{b} \\
\]
We know that cross product of a vector with itself gives zero,
\[\Rightarrow 0-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-0\]
\[=-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}\]
Also, vector product is not commutative, so using law of commutativity, we get,
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) =\overrightarrow{b}\times \overrightarrow{a}+\overrightarrow{b}\times \overrightarrow{a} \\
\Rightarrow 2\overrightarrow{(b}\times \overrightarrow{a}) \\
\]
\[\therefore \]the answer is \[2\overrightarrow{(b}\times \overrightarrow{a})\]
Hence, the correct option is (B).
Note: While taking either dot product or cross product we have to keep in mind we have to take the angle between the two original vectors.As vector multiplication is not commutative so take care while multiplying the vectors.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

