
if a and b are the two vectors then the value of
\[(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b})\]
A- \[2(\overrightarrow{b}\times \overrightarrow{a})\]
B- \[-2(\overrightarrow{b}\times \overrightarrow{a})\]
C- \[(\overrightarrow{b}\times \overrightarrow{a})\]
D- \[(\overrightarrow{a}\times \overrightarrow{b})\]
Answer
579.6k+ views
Hint: Vectors can be multiplied with one other using two product rules- broadly dot product which gives a scalar result and cross-product which gives vector result. Here we are given two vectors and we need to find the cross product. We use the laws of vector algebra.
Step by step answer: The given two vectors are \[(\overrightarrow{a}+\overrightarrow{b})\]and \[(\overrightarrow{a}-\overrightarrow{b})\]
We need to find the cross product, so we use the laws of algebra.
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times (\overrightarrow{a}-\overrightarrow{b})+\overrightarrow{b}\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times \overrightarrow{a}-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-\overrightarrow{b}\times \overrightarrow{b} \\
\]
We know that cross product of a vector with itself gives zero,
\[\Rightarrow 0-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-0\]
\[=-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}\]
Also, vector product is not commutative, so using law of commutativity, we get,
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) =\overrightarrow{b}\times \overrightarrow{a}+\overrightarrow{b}\times \overrightarrow{a} \\
\Rightarrow 2\overrightarrow{(b}\times \overrightarrow{a}) \\
\]
\[\therefore \]the answer is \[2\overrightarrow{(b}\times \overrightarrow{a})\]
Hence, the correct option is (B).
Note: While taking either dot product or cross product we have to keep in mind we have to take the angle between the two original vectors.As vector multiplication is not commutative so take care while multiplying the vectors.
Step by step answer: The given two vectors are \[(\overrightarrow{a}+\overrightarrow{b})\]and \[(\overrightarrow{a}-\overrightarrow{b})\]
We need to find the cross product, so we use the laws of algebra.
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times (\overrightarrow{a}-\overrightarrow{b})+\overrightarrow{b}\times (\overrightarrow{a}-\overrightarrow{b}) \\
=\overrightarrow{a}\times \overrightarrow{a}-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-\overrightarrow{b}\times \overrightarrow{b} \\
\]
We know that cross product of a vector with itself gives zero,
\[\Rightarrow 0-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}-0\]
\[=-\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{a}\]
Also, vector product is not commutative, so using law of commutativity, we get,
\[
(\overrightarrow{a}+\overrightarrow{b})\times (\overrightarrow{a}-\overrightarrow{b}) =\overrightarrow{b}\times \overrightarrow{a}+\overrightarrow{b}\times \overrightarrow{a} \\
\Rightarrow 2\overrightarrow{(b}\times \overrightarrow{a}) \\
\]
\[\therefore \]the answer is \[2\overrightarrow{(b}\times \overrightarrow{a})\]
Hence, the correct option is (B).
Note: While taking either dot product or cross product we have to keep in mind we have to take the angle between the two original vectors.As vector multiplication is not commutative so take care while multiplying the vectors.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

