
If \[A\] and \[B\] are symmetric matrices, then \[ABA\] is
(a) Symmetric
(b) Skew-symmetric
(c) Diagonal
(d) Triangular
Answer
504.7k+ views
Hint:
Here, we need to find the type of matrix \[ABA\]. We will use the given information to find the transpose of the matrix \[ABA\], and using that, we will determine the type of matrix \[ABA\].
Formula Used:
We will use the formula of the transpose of two matrices \[X\] and \[Y\] can be written as \[{\left( {XY} \right)^T} = {Y^T}{X^T}\].
Complete step by step solution:
A symmetric matrix is a matrix whose transpose is equal to the matrix.
The transpose of a matrix \[A\] is denoted by \[{A^T}\].
Thus, if \[A\] is a symmetric matrix, then \[A = {A^T}\].
It is given that \[A\] and \[B\] are symmetric matrices.
Therefore, we get
\[A = {A^T}\] and \[B = {B^T}\]
Now, we will find the transpose of the matrix \[ABA\].
The transpose of the matrix \[ABA\] is given by \[{\left( {ABA} \right)^T}\].
The transpose of two matrices \[X\] and \[Y\] can be written as \[{\left( {XY} \right)^T} = {Y^T}{X^T}\].
Therefore, we get
\[ \Rightarrow {\left( {ABA} \right)^T} = {A^T}{B^T}{A^T}\]
Substituting \[{A^T} = A\] and \[{B^T} = B\] in the equation, we get
\[ \Rightarrow {\left( {ABA} \right)^T} = ABA\]
We can observe that the transpose of the matrix \[ABA\] is equal to the matrix \[ABA\].
Therefore, the matrix \[ABA\] is a symmetric matrix.
Thus, the correct option is option (a).
Note:
We can verify our solution by taking any two symmetric matrices.
Let \[A = \left[ {\begin{array}{*{20}{l}}2&0&1\\0&3&2\\1&2&4\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{l}}1&2&1\\2&2&3\\1&3&5\end{array}} \right]\].
We will check whether \[{\left( {ABA} \right)^T} = ABA\].
Multiplying the matrices A and B, we get
\[\begin{array}{l} \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}2&0&1\\0&3&2\\1&2&4\end{array}} \right]\left[ {\begin{array}{*{20}{l}}1&2&1\\2&2&3\\1&3&5\end{array}} \right]\\ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 \times 1 + 0 \times 2 + 1 \times 1}&{2 \times 2 + 0 \times 2 + 1 \times 3}&{2 \times 1 + 0 \times 3 + 1 \times 5}\\{0 \times 1 + 3 \times 2 + 2 \times 1}&{0 \times 2 + 3 \times 2 + 2 \times 3}&{0 \times 1 + 3 \times 3 + 2 \times 5}\\{1 \times 1 + 2 \times 2 + 4 \times 1}&{1 \times 2 + 2 \times 2 + 4 \times 3}&{1 \times 1 + 2 \times 3 + 4 \times 5}\end{array}} \right]\end{array}\]
Multiplying the terms in the matrix, we get
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 + 0 + 1}&{4 + 0 + 3}&{2 + 0 + 5}\\{0 + 6 + 2}&{0 + 6 + 6}&{0 + 9 + 10}\\{1 + 4 + 4}&{2 + 4 + 12}&{1 + 6 + 20}\end{array}} \right]\]
Adding the terms in the matrix, we get
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}3&7&7\\8&{12}&{19}\\9&{18}&{27}\end{array}} \right]\]
Now, we will multiply the matrices AB and A.
Therefore, we get
\[\begin{array}{l} \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}3&7&7\\8&{12}&{19}\\9&{18}&{27}\end{array}} \right]\left[ {\begin{array}{*{20}{l}}2&0&1\\0&3&2\\1&2&4\end{array}} \right]\\ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{3 \times 2 + 7 \times 0 + 7 \times 1}&{3 \times 0 + 7 \times 3 + 7 \times 2}&{3 \times 1 + 7 \times 2 + 7 \times 4}\\{8 \times 2 + 12 \times 0 + 19 \times 1}&{8 \times 0 + 12 \times 3 + 19 \times 2}&{8 \times 1 + 12 \times 2 + 19 \times 4}\\{9 \times 2 + 18 \times 0 + 27 \times 1}&{9 \times 0 + 18 \times 3 + 27 \times 2}&{9 \times 1 + 18 \times 2 + 27 \times 4}\end{array}} \right]\end{array}\]
Multiplying the terms in the matrix, we get
\[ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{6 + 0 + 7}&{0 + 21 + 14}&{3 + 14 + 28}\\{16 + 0 + 19}&{0 + 36 + 38}&{8 + 24 + 76}\\{18 + 0 + 27}&{0 + 54 + 54}&{9 + 36 + 108}\end{array}} \right]\]
Adding the terms in the matrix, we get
\[ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\{35}&{74}&{108}\\{45}&{108}&{153}\end{array}} \right]\]
Now, we will find the transpose of the matrix ABA.
The transpose of a matrix is formed by interchanging the rows and columns of the matrix.
Therefore, we get
\[ \Rightarrow {\left( {ABA} \right)^T} = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\{35}&{74}&{108}\\{45}&{108}&{153}\end{array}} \right]\]
We can observe that the transpose of the matrix \[ABA\] is equal to the matrix \[ABA\].
Hence, we have verified that the matrix \[ABA\] is a symmetric matrix.
Here, we need to find the type of matrix \[ABA\]. We will use the given information to find the transpose of the matrix \[ABA\], and using that, we will determine the type of matrix \[ABA\].
Formula Used:
We will use the formula of the transpose of two matrices \[X\] and \[Y\] can be written as \[{\left( {XY} \right)^T} = {Y^T}{X^T}\].
Complete step by step solution:
A symmetric matrix is a matrix whose transpose is equal to the matrix.
The transpose of a matrix \[A\] is denoted by \[{A^T}\].
Thus, if \[A\] is a symmetric matrix, then \[A = {A^T}\].
It is given that \[A\] and \[B\] are symmetric matrices.
Therefore, we get
\[A = {A^T}\] and \[B = {B^T}\]
Now, we will find the transpose of the matrix \[ABA\].
The transpose of the matrix \[ABA\] is given by \[{\left( {ABA} \right)^T}\].
The transpose of two matrices \[X\] and \[Y\] can be written as \[{\left( {XY} \right)^T} = {Y^T}{X^T}\].
Therefore, we get
\[ \Rightarrow {\left( {ABA} \right)^T} = {A^T}{B^T}{A^T}\]
Substituting \[{A^T} = A\] and \[{B^T} = B\] in the equation, we get
\[ \Rightarrow {\left( {ABA} \right)^T} = ABA\]
We can observe that the transpose of the matrix \[ABA\] is equal to the matrix \[ABA\].
Therefore, the matrix \[ABA\] is a symmetric matrix.
Thus, the correct option is option (a).
Note:
We can verify our solution by taking any two symmetric matrices.
Let \[A = \left[ {\begin{array}{*{20}{l}}2&0&1\\0&3&2\\1&2&4\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{l}}1&2&1\\2&2&3\\1&3&5\end{array}} \right]\].
We will check whether \[{\left( {ABA} \right)^T} = ABA\].
Multiplying the matrices A and B, we get
\[\begin{array}{l} \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}2&0&1\\0&3&2\\1&2&4\end{array}} \right]\left[ {\begin{array}{*{20}{l}}1&2&1\\2&2&3\\1&3&5\end{array}} \right]\\ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 \times 1 + 0 \times 2 + 1 \times 1}&{2 \times 2 + 0 \times 2 + 1 \times 3}&{2 \times 1 + 0 \times 3 + 1 \times 5}\\{0 \times 1 + 3 \times 2 + 2 \times 1}&{0 \times 2 + 3 \times 2 + 2 \times 3}&{0 \times 1 + 3 \times 3 + 2 \times 5}\\{1 \times 1 + 2 \times 2 + 4 \times 1}&{1 \times 2 + 2 \times 2 + 4 \times 3}&{1 \times 1 + 2 \times 3 + 4 \times 5}\end{array}} \right]\end{array}\]
Multiplying the terms in the matrix, we get
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 + 0 + 1}&{4 + 0 + 3}&{2 + 0 + 5}\\{0 + 6 + 2}&{0 + 6 + 6}&{0 + 9 + 10}\\{1 + 4 + 4}&{2 + 4 + 12}&{1 + 6 + 20}\end{array}} \right]\]
Adding the terms in the matrix, we get
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}3&7&7\\8&{12}&{19}\\9&{18}&{27}\end{array}} \right]\]
Now, we will multiply the matrices AB and A.
Therefore, we get
\[\begin{array}{l} \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}3&7&7\\8&{12}&{19}\\9&{18}&{27}\end{array}} \right]\left[ {\begin{array}{*{20}{l}}2&0&1\\0&3&2\\1&2&4\end{array}} \right]\\ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{3 \times 2 + 7 \times 0 + 7 \times 1}&{3 \times 0 + 7 \times 3 + 7 \times 2}&{3 \times 1 + 7 \times 2 + 7 \times 4}\\{8 \times 2 + 12 \times 0 + 19 \times 1}&{8 \times 0 + 12 \times 3 + 19 \times 2}&{8 \times 1 + 12 \times 2 + 19 \times 4}\\{9 \times 2 + 18 \times 0 + 27 \times 1}&{9 \times 0 + 18 \times 3 + 27 \times 2}&{9 \times 1 + 18 \times 2 + 27 \times 4}\end{array}} \right]\end{array}\]
Multiplying the terms in the matrix, we get
\[ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{6 + 0 + 7}&{0 + 21 + 14}&{3 + 14 + 28}\\{16 + 0 + 19}&{0 + 36 + 38}&{8 + 24 + 76}\\{18 + 0 + 27}&{0 + 54 + 54}&{9 + 36 + 108}\end{array}} \right]\]
Adding the terms in the matrix, we get
\[ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\{35}&{74}&{108}\\{45}&{108}&{153}\end{array}} \right]\]
Now, we will find the transpose of the matrix ABA.
The transpose of a matrix is formed by interchanging the rows and columns of the matrix.
Therefore, we get
\[ \Rightarrow {\left( {ABA} \right)^T} = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\{35}&{74}&{108}\\{45}&{108}&{153}\end{array}} \right]\]
We can observe that the transpose of the matrix \[ABA\] is equal to the matrix \[ABA\].
Hence, we have verified that the matrix \[ABA\] is a symmetric matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

