
If A (1,2,-1), B (3,5,0), C (5,11,22) and D (5,8,6) are the vertices. Find the volume of the parallelepiped with segment AB, AC and AD as concurrent edges.
Answer
595.5k+ views
Hint: To solve this question, we will use the concept of position vectors and volume of parallelepiped with concurrent edges. The volume of parallelepiped with concurrent edges $\vec a,\vec b$ and $\vec c$ is given as scalar triple product of $\vec a,\vec b$ and $\vec c$ and is denoted by $\left[ {\vec a{\text{ }}\vec b{\text{ }}\vec c} \right] = \left( {\vec a \times \vec b} \right).\vec c = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ .
Complete step by step answer:
Given that,
A (1,2,-1), B (3,5,0), C (5,11,22) and D (5,8,6) are the vertices.
Now, we have to find the segments AB, AC and AD.
We know that,
$\overrightarrow {AB} $= Position vector of B – Position vector of A.
So,
Position vector of A = $\hat i + 2\hat j - \hat k$
Position vector of B = \[3\hat i + 5\hat j + 0\hat k\]
Position vector of C = $5\hat i + 11\hat j + 22\hat k$
Position vector of D = $5\hat i + 8\hat j + 6\hat k$
Therefore,
$
\overrightarrow {AB} = \left( {3\hat i + 5\hat j + 0\hat k} \right) - \left( {\hat i + 2\hat j - \hat k} \right) \\
\overrightarrow {AB} = 2\hat i + 3\hat j + \hat k \\
$
Similarly,
$
\overrightarrow {AC} = \left( {5\hat i + 11\hat j + 22\hat k} \right) - \left( {\hat i + 2\hat j - \hat k} \right) \\
\overrightarrow {AC} = 4\hat i + 9\hat j + 23\hat k \\
$
And,
$
\overrightarrow {AD} = \left( {5\hat i + 8\hat j + 6\hat k} \right) - \left( {\hat i + 2\hat j - \hat k} \right) \\
\overrightarrow {AD} = 4\hat i + 6\hat j + 7\hat k \\
$
Now we have got all the segments AB, AC and AD.
We know that,
The volume of parallelepiped with concurrent edges = scalar triple product of those edges.
We also know that, the scalar triple product in terms of components is,
If \[\overrightarrow a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k,\] \[\overrightarrow b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\] and \[\overrightarrow c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k\] be three vectors. Then,
$\left[ {\overrightarrow a \overrightarrow {{\text{ }}b} {\text{ }}\overrightarrow c } \right] = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$.
Therefore,
\[
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = \left| {\begin{array}{*{20}{c}}
2&3&1 \\
4&9&{23} \\
4&6&7
\end{array}} \right| \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = 2\left( {63 - 138} \right) - 3\left( {28 - 92} \right) + 1\left( {24 - 36} \right) \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = 2\left( { - 75} \right) - 3\left( { - 64} \right) + 1\left( { - 12} \right) \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = - 150 + 192 - 12 \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = 30 \\
\]
Hence, Volume of parallelepiped = \[\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right]\] = 30.
Note: Whenever we ask such types of questions, we should remember some basic points of vectors like positioning of vectors, scalar triple product etc. First, we have to find out the position vectors of the segments by using the given points. Then we will use those vectors in the formula of volume of parallelepiped, i.e. scalar triple product and after that by finding the scalar triple product of those segments, we will get the required answer.
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ .
Complete step by step answer:
Given that,
A (1,2,-1), B (3,5,0), C (5,11,22) and D (5,8,6) are the vertices.
Now, we have to find the segments AB, AC and AD.
We know that,
$\overrightarrow {AB} $= Position vector of B – Position vector of A.
So,
Position vector of A = $\hat i + 2\hat j - \hat k$
Position vector of B = \[3\hat i + 5\hat j + 0\hat k\]
Position vector of C = $5\hat i + 11\hat j + 22\hat k$
Position vector of D = $5\hat i + 8\hat j + 6\hat k$
Therefore,
$
\overrightarrow {AB} = \left( {3\hat i + 5\hat j + 0\hat k} \right) - \left( {\hat i + 2\hat j - \hat k} \right) \\
\overrightarrow {AB} = 2\hat i + 3\hat j + \hat k \\
$
Similarly,
$
\overrightarrow {AC} = \left( {5\hat i + 11\hat j + 22\hat k} \right) - \left( {\hat i + 2\hat j - \hat k} \right) \\
\overrightarrow {AC} = 4\hat i + 9\hat j + 23\hat k \\
$
And,
$
\overrightarrow {AD} = \left( {5\hat i + 8\hat j + 6\hat k} \right) - \left( {\hat i + 2\hat j - \hat k} \right) \\
\overrightarrow {AD} = 4\hat i + 6\hat j + 7\hat k \\
$
Now we have got all the segments AB, AC and AD.
We know that,
The volume of parallelepiped with concurrent edges = scalar triple product of those edges.
We also know that, the scalar triple product in terms of components is,
If \[\overrightarrow a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k,\] \[\overrightarrow b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\] and \[\overrightarrow c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k\] be three vectors. Then,
$\left[ {\overrightarrow a \overrightarrow {{\text{ }}b} {\text{ }}\overrightarrow c } \right] = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$.
Therefore,
\[
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = \left| {\begin{array}{*{20}{c}}
2&3&1 \\
4&9&{23} \\
4&6&7
\end{array}} \right| \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = 2\left( {63 - 138} \right) - 3\left( {28 - 92} \right) + 1\left( {24 - 36} \right) \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = 2\left( { - 75} \right) - 3\left( { - 64} \right) + 1\left( { - 12} \right) \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = - 150 + 192 - 12 \\
\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right] = 30 \\
\]
Hence, Volume of parallelepiped = \[\left[ {\overrightarrow {AB} \overrightarrow {{\text{ AC}}} {\text{ }}\overrightarrow {AD} } \right]\] = 30.
Note: Whenever we ask such types of questions, we should remember some basic points of vectors like positioning of vectors, scalar triple product etc. First, we have to find out the position vectors of the segments by using the given points. Then we will use those vectors in the formula of volume of parallelepiped, i.e. scalar triple product and after that by finding the scalar triple product of those segments, we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

