
If \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right]\] hence prove that \[{A^3} - 6{A^2} + 7A + 2I = 0\]
Answer
498.9k+ views
Hint: Here, we will prove the given condition. We will find the original matrix from the given inverse of a matrix and then find the square and cube of a matrix and by substituting these matrices in the equation, we will prove the given condition.
Formula Used:
We will use the following formula:
1.The inverse of a matrix is given by \[{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}\]
2.Transpose of a matrix is given by the formula \[{A^T} = {\left[ {{a_{ij}}} \right]_{n \times m}}\]
3.The inverse of a matrix is given by \[{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}\]
Complete step-by-step answer:
We are given the inverse of a matrix \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right]\]
Now, we will find the original matrix \[A\] .
We know that the inverse of an inverse matrix is an original matrix.
Now, we will find the determinant of the matrix \[D\].
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = - 3\left| {\begin{array}{*{20}{l}}{\dfrac{1}{2}}&{\dfrac{1}{2}}\\0&{ - 1}\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&{ - 1}\end{array}} \right| + 2\left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&0\end{array}} \right|\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = - 3\left( {\dfrac{{ - 1}}{2}} \right) - 0 + 2\left( {\dfrac{{ - 2}}{2}} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{3}{2} - 2\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{3}{2} - 2 \times \dfrac{2}{2}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{{3 - 4}}{2}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{{ - 1}}{2} \ne 0\]
Since the determinant of the matrix is not zero, then there exist an inverse of the matrix.
Now, we will find the Adjoint of a matrix by finding the transpose of a matrix with cofactors.
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left| {\begin{array}{*{20}{l}}{\dfrac{1}{2}}&{\dfrac{1}{2}}\\0&{ - 1}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&{ - 1}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&0\end{array}} \right|}\\{ - \left| {\begin{array}{*{20}{l}}0&2\\0&{ - 1}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 3}&2\\2&{ - 1}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 3}&0\\2&0\end{array}} \right|}\\{ + \left| {\begin{array}{*{20}{l}}0&2\\{\dfrac{1}{2}}&{\dfrac{1}{2}}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 3}&2\\{ - 1}&{\dfrac{1}{2}}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 3}&0\\{ - 1}&{\dfrac{1}{2}}\end{array}} \right|}\end{array}} \right]^T}\]
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left( {\dfrac{{ - 1}}{2}} \right)}&{ - \left( {1 - \dfrac{2}{2}} \right)}&{ + \left( {\dfrac{{ - 2}}{2}} \right)}\\0&{ + \left( {3 - 4} \right)}&0\\{ + \left( {\dfrac{{ - 2}}{2}} \right)}&{ - \left( {\dfrac{{ - 3}}{2} + 2} \right)}&{ + \left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}\]
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left( {\dfrac{{ - 1}}{2}} \right)}&{ - \left( {1 - 1} \right)}&{ + \left( { - 1} \right)}\\0&{ + \left( { - 1} \right)}&0\\{ + \left( { - 1} \right)}&{ - \left( {\dfrac{1}{2}} \right)}&{ + \left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}\]
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&0\\{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}\]
Transpose of a matrix is given by the formula \[{A^T} = {\left[ {{a_{ij}}} \right]_{n \times m}}\] where \[A = {\left[ {{a_{ij}}} \right]_{m \times n}}\]
\[ \Rightarrow adj{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]\]
Now, we will find the inverse of a matrix.
The inverse of a matrix is given by \[{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}\]
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \dfrac{1}{{\left| {{A^{ - 1}}} \right|}}adj\left( {{A^{ - 1}}} \right)\]
Thus, we get
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \dfrac{1}{{\dfrac{{ - 1}}{2}}}\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]\]
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = - 2\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]\]
By multiplying the terms, we get
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{2}{2}} \right)}&0&{\left( 2 \right)}\\0&{\left( 2 \right)}&{\left( {\dfrac{2}{2}} \right)}\\{\left( 2 \right)}&0&{\left( {\dfrac{{ - 3 \times - 2}}{2}} \right)}\end{array}} \right]\]
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\]
\[ \Rightarrow A = \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\] ……………………………………………………..\[\left( 1 \right)\]
Now, we will find the square of the Matrix A.
\[ \Rightarrow {A^2} = A \times A\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] \times \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\]
By Matrix Multiplication, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}{1 + 0 + 4}&{0 + 0 + 0}&{2 + 0 + 6}\\{0 + 0 + 2}&{0 + 4 + 0}&{0 + 2 + 3}\\{2 + 0 + 6}&{0 + 0 + 0}&{4 + 0 + 9}\end{array}} \right]\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right]\] ………………………………………………………………………………………………………..\[\left( 2 \right)\]
Now, we will find the cube of the matrix A
\[ \Rightarrow {A^3} = {A^2} \times A\]
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] \times \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\]
By Matrix Multiplication, we get
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}{5 + 0 + 16}&{0 + 0 + 0}&{10 + 0 + 24}\\{2 + 0 + 10}&{0 + 8 + 0}&{4 + 4 + 15}\\{8 + 0 + 26}&{0 + 0 + 0}&{16 + 0 + 39}\end{array}} \right]\]
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right]\] …………………………………………\[\left( 3 \right)\]
Now, we will prove that \[{A^3} - 6{A^2} + 7A + 2I = 0\]
Now, by substituting \[\left( 1 \right),\left( 2 \right),\left( 3 \right)\] , we get
\[ \Rightarrow {A^3} - 6{A^2} + 7A + 2I = 0\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}{ - 30}&0&{ - 48}\\{ - 12}&{ - 24}&{ - 30}\\{ - 48}&0&{ - 78}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}7&0&{14}\\0&{14}&7\\{14}&0&{21}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}2&0&0\\0&2&0\\0&0&2\end{array}} \right]\]
By adding, we get
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{21 - 30 + 7 + 1}&{0 + 0 + 0 + 0}&{34 - 48 + 14 + 0}\\{12 - 12 + 0 + 0}&{8 - 24 + 14 + 2}&{23 - 30 + 7 + 0}\\{34 - 48 + 14 + 0}&{0 + 0 + 0 + 0}&{55 - 78 + 21 + 2}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{30 - 30}&0&{48 - 48}\\{12 - 12}&{24 - 24}&{30 - 30}\\{48 - 48}&0&{78 - 78}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}0&0&0\\0&0&0\\0&0&0\end{array}} \right]\]
Therefore, \[{A^3} - 6{A^2} + 7A + 2I = 0\] .
Note: We know that the matrix multiplication is possible only if the number of columns in one matrix is equal to the number of rows in another matrix. \[I\] is the Identity matrix which should always be equal to the dimensions of the other matrix in the given condition. Identity matrix is a diagonal matrix with its diagonal as 1. If all the elements in a matrix are zero, then the matrix is said to be a null matrix. So, the given \[{A^3} - 6{A^2} + 7A + 2I\] is a null matrix. We should remember that the square of the matrix is defined as the product of itself two times and not the square of the elements in the matrix.
Formula Used:
We will use the following formula:
1.The inverse of a matrix is given by \[{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}\]
2.Transpose of a matrix is given by the formula \[{A^T} = {\left[ {{a_{ij}}} \right]_{n \times m}}\]
3.The inverse of a matrix is given by \[{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}\]
Complete step-by-step answer:
We are given the inverse of a matrix \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right]\]
Now, we will find the original matrix \[A\] .
We know that the inverse of an inverse matrix is an original matrix.
Now, we will find the determinant of the matrix \[D\].
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = - 3\left| {\begin{array}{*{20}{l}}{\dfrac{1}{2}}&{\dfrac{1}{2}}\\0&{ - 1}\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&{ - 1}\end{array}} \right| + 2\left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&0\end{array}} \right|\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = - 3\left( {\dfrac{{ - 1}}{2}} \right) - 0 + 2\left( {\dfrac{{ - 2}}{2}} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{3}{2} - 2\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{3}{2} - 2 \times \dfrac{2}{2}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{{3 - 4}}{2}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}{ - 3}&0&2\\{ - 1}&{\dfrac{1}{2}}&{\dfrac{1}{2}}\\2&0&{ - 1}\end{array}} \right| = \dfrac{{ - 1}}{2} \ne 0\]
Since the determinant of the matrix is not zero, then there exist an inverse of the matrix.
Now, we will find the Adjoint of a matrix by finding the transpose of a matrix with cofactors.
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left| {\begin{array}{*{20}{l}}{\dfrac{1}{2}}&{\dfrac{1}{2}}\\0&{ - 1}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&{ - 1}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 1}&{\dfrac{1}{2}}\\2&0\end{array}} \right|}\\{ - \left| {\begin{array}{*{20}{l}}0&2\\0&{ - 1}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 3}&2\\2&{ - 1}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 3}&0\\2&0\end{array}} \right|}\\{ + \left| {\begin{array}{*{20}{l}}0&2\\{\dfrac{1}{2}}&{\dfrac{1}{2}}\end{array}} \right|}&{ - \left| {\begin{array}{*{20}{l}}{ - 3}&2\\{ - 1}&{\dfrac{1}{2}}\end{array}} \right|}&{ + \left| {\begin{array}{*{20}{l}}{ - 3}&0\\{ - 1}&{\dfrac{1}{2}}\end{array}} \right|}\end{array}} \right]^T}\]
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left( {\dfrac{{ - 1}}{2}} \right)}&{ - \left( {1 - \dfrac{2}{2}} \right)}&{ + \left( {\dfrac{{ - 2}}{2}} \right)}\\0&{ + \left( {3 - 4} \right)}&0\\{ + \left( {\dfrac{{ - 2}}{2}} \right)}&{ - \left( {\dfrac{{ - 3}}{2} + 2} \right)}&{ + \left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}\]
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{ + \left( {\dfrac{{ - 1}}{2}} \right)}&{ - \left( {1 - 1} \right)}&{ + \left( { - 1} \right)}\\0&{ + \left( { - 1} \right)}&0\\{ + \left( { - 1} \right)}&{ - \left( {\dfrac{1}{2}} \right)}&{ + \left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}\]
\[ \Rightarrow adj{A^{ - 1}} = {\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&0\\{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]^T}\]
Transpose of a matrix is given by the formula \[{A^T} = {\left[ {{a_{ij}}} \right]_{n \times m}}\] where \[A = {\left[ {{a_{ij}}} \right]_{m \times n}}\]
\[ \Rightarrow adj{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]\]
Now, we will find the inverse of a matrix.
The inverse of a matrix is given by \[{A^{ - 1}} = \dfrac{{Adj\left( A \right)}}{{\left| A \right|}}\]
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \dfrac{1}{{\left| {{A^{ - 1}}} \right|}}adj\left( {{A^{ - 1}}} \right)\]
Thus, we get
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \dfrac{1}{{\dfrac{{ - 1}}{2}}}\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]\]
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = - 2\left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{{ - 1}}{2}} \right)}&0&{\left( { - 1} \right)}\\0&{\left( { - 1} \right)}&{\left( {\dfrac{{ - 1}}{2}} \right)}\\{\left( { - 1} \right)}&0&{\left( {\dfrac{{ - 3}}{2}} \right)}\end{array}} \right]\]
By multiplying the terms, we get
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{\left( {\dfrac{2}{2}} \right)}&0&{\left( 2 \right)}\\0&{\left( 2 \right)}&{\left( {\dfrac{2}{2}} \right)}\\{\left( 2 \right)}&0&{\left( {\dfrac{{ - 3 \times - 2}}{2}} \right)}\end{array}} \right]\]
\[ \Rightarrow {\left( {{A^{ - 1}}} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\]
\[ \Rightarrow A = \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\] ……………………………………………………..\[\left( 1 \right)\]
Now, we will find the square of the Matrix A.
\[ \Rightarrow {A^2} = A \times A\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] \times \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\]
By Matrix Multiplication, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}{1 + 0 + 4}&{0 + 0 + 0}&{2 + 0 + 6}\\{0 + 0 + 2}&{0 + 4 + 0}&{0 + 2 + 3}\\{2 + 0 + 6}&{0 + 0 + 0}&{4 + 0 + 9}\end{array}} \right]\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right]\] ………………………………………………………………………………………………………..\[\left( 2 \right)\]
Now, we will find the cube of the matrix A
\[ \Rightarrow {A^3} = {A^2} \times A\]
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] \times \left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right]\]
By Matrix Multiplication, we get
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}{5 + 0 + 16}&{0 + 0 + 0}&{10 + 0 + 24}\\{2 + 0 + 10}&{0 + 8 + 0}&{4 + 4 + 15}\\{8 + 0 + 26}&{0 + 0 + 0}&{16 + 0 + 39}\end{array}} \right]\]
\[ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right]\] …………………………………………\[\left( 3 \right)\]
Now, we will prove that \[{A^3} - 6{A^2} + 7A + 2I = 0\]
Now, by substituting \[\left( 1 \right),\left( 2 \right),\left( 3 \right)\] , we get
\[ \Rightarrow {A^3} - 6{A^2} + 7A + 2I = 0\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{21}&0&{34}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}{ - 30}&0&{ - 48}\\{ - 12}&{ - 24}&{ - 30}\\{ - 48}&0&{ - 78}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}7&0&{14}\\0&{14}&7\\{14}&0&{21}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}2&0&0\\0&2&0\\0&0&2\end{array}} \right]\]
By adding, we get
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{21 - 30 + 7 + 1}&{0 + 0 + 0 + 0}&{34 - 48 + 14 + 0}\\{12 - 12 + 0 + 0}&{8 - 24 + 14 + 2}&{23 - 30 + 7 + 0}\\{34 - 48 + 14 + 0}&{0 + 0 + 0 + 0}&{55 - 78 + 21 + 2}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{30 - 30}&0&{48 - 48}\\{12 - 12}&{24 - 24}&{30 - 30}\\{48 - 48}&0&{78 - 78}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{l}}{21}&0&{40}\\{12}&8&{23}\\{34}&0&{55}\end{array}} \right] - 6\left[ {\begin{array}{*{20}{l}}5&0&8\\2&4&5\\8&0&{13}\end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}}1&0&2\\0&2&1\\2&0&3\end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}0&0&0\\0&0&0\\0&0&0\end{array}} \right]\]
Therefore, \[{A^3} - 6{A^2} + 7A + 2I = 0\] .
Note: We know that the matrix multiplication is possible only if the number of columns in one matrix is equal to the number of rows in another matrix. \[I\] is the Identity matrix which should always be equal to the dimensions of the other matrix in the given condition. Identity matrix is a diagonal matrix with its diagonal as 1. If all the elements in a matrix are zero, then the matrix is said to be a null matrix. So, the given \[{A^3} - 6{A^2} + 7A + 2I\] is a null matrix. We should remember that the square of the matrix is defined as the product of itself two times and not the square of the elements in the matrix.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
