
If A (1, 2), B (-3, 2) and C (3, -2) be the vertices of a \[\Delta ABC\], show that,
(i) $\tan A=2$
(ii) $\tan B=\dfrac{2}{3}$
(iii) $\tan C=\dfrac{4}{7}$
Answer
594.9k+ views
Hint: We will be using the concept of coordinate geometry to solve the problem. We will first using the fact that the angle between two lines with slope ${{m}_{1}},{{m}_{2}}\ is\ \tan \theta =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$.
Complete step-by-step answer:
Now, we have been given three vertices of a \[\Delta ABC\] are,
A (1, 2), B (-3, 2) and C (3, -2)
So, we have \[\Delta ABC\]as,
Now, we let the slope $AB={{m}_{1}}$
Also, we know that the slope of line passing through two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)\ is\ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
${{m}_{1}}=\dfrac{2-2}{-3-1}=0$
Now, let the slope of $BC={{m}_{2}}$
$\begin{align}
& =\dfrac{2-\left( -2 \right)}{-3-3} \\
& =\dfrac{2+2}{-6} \\
& =\dfrac{4}{-6} \\
& =\dfrac{-2}{3} \\
\end{align}$
Now, let the slope of $AC={{m}_{3}}$
$\begin{align}
& =\dfrac{2-\left( -2 \right)}{1-3} \\
& =\dfrac{2+2}{-2} \\
& =\dfrac{4}{-2} \\
& =-2 \\
\end{align}$
Now, we know that the angle between two lines having slope ${{m}_{1}},{{m}_{2}}$ is,
$\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$
Now, we know that all the angles in \[\Delta ABC\] are acute. Therefore, tan A, tan B, tan C will be positive only. Therefore, we have,
$\begin{align}
& \tan A=\left| \dfrac{{{m}_{1}}-{{m}_{3}}}{1+{{m}_{1}}{{m}_{3}}} \right|=\dfrac{0-\left( -2 \right)}{1+\left( 0 \right)\left( -2 \right)} \\
& \tan A=2 \\
& \tan B=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right| \\
& =\left| \dfrac{0-\left( -\dfrac{2}{3} \right)}{1+\left( 0 \right)\left( -\dfrac{2}{3} \right)} \right| \\
& =\dfrac{2}{3} \\
\end{align}$
$\begin{align}
& \tan C=\left| \dfrac{{{m}_{2}}-{{m}_{3}}}{1+{{m}_{2}}{{m}_{3}}} \right| \\
& =\left| \dfrac{-\dfrac{2}{3}-\left( -2 \right)}{1+\left( -\dfrac{2}{3} \right)\left( -2 \right)} \right| \\
& =\left| \dfrac{-\dfrac{2}{3}+2}{1+\dfrac{4}{3}} \right| \\
& =\left| \dfrac{2-\dfrac{2}{3}}{1+\dfrac{4}{3}} \right| \\
& =\left| \dfrac{\dfrac{6-2}{3}}{\dfrac{3+4}{3}} \right| \\
& =\dfrac{4}{7} \\
\end{align}$
Therefore, we have showed that,
(i) $\tan A=2$
(ii) $\tan B=\dfrac{2}{3}$
(iii) $\tan C=\dfrac{4}{7}$
Note: To solve these type of question it is important to note that we have used the fact that the angle between two lines with slope ${{m}_{1}},{{m}_{2}}\ is\ \tan \theta =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$ and the the slope of line passing through two points is $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)\ is\ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Complete step-by-step answer:
Now, we have been given three vertices of a \[\Delta ABC\] are,
A (1, 2), B (-3, 2) and C (3, -2)
So, we have \[\Delta ABC\]as,
Now, we let the slope $AB={{m}_{1}}$
Also, we know that the slope of line passing through two points $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)\ is\ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
${{m}_{1}}=\dfrac{2-2}{-3-1}=0$
Now, let the slope of $BC={{m}_{2}}$
$\begin{align}
& =\dfrac{2-\left( -2 \right)}{-3-3} \\
& =\dfrac{2+2}{-6} \\
& =\dfrac{4}{-6} \\
& =\dfrac{-2}{3} \\
\end{align}$
Now, let the slope of $AC={{m}_{3}}$
$\begin{align}
& =\dfrac{2-\left( -2 \right)}{1-3} \\
& =\dfrac{2+2}{-2} \\
& =\dfrac{4}{-2} \\
& =-2 \\
\end{align}$
Now, we know that the angle between two lines having slope ${{m}_{1}},{{m}_{2}}$ is,
$\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$
Now, we know that all the angles in \[\Delta ABC\] are acute. Therefore, tan A, tan B, tan C will be positive only. Therefore, we have,
$\begin{align}
& \tan A=\left| \dfrac{{{m}_{1}}-{{m}_{3}}}{1+{{m}_{1}}{{m}_{3}}} \right|=\dfrac{0-\left( -2 \right)}{1+\left( 0 \right)\left( -2 \right)} \\
& \tan A=2 \\
& \tan B=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right| \\
& =\left| \dfrac{0-\left( -\dfrac{2}{3} \right)}{1+\left( 0 \right)\left( -\dfrac{2}{3} \right)} \right| \\
& =\dfrac{2}{3} \\
\end{align}$
$\begin{align}
& \tan C=\left| \dfrac{{{m}_{2}}-{{m}_{3}}}{1+{{m}_{2}}{{m}_{3}}} \right| \\
& =\left| \dfrac{-\dfrac{2}{3}-\left( -2 \right)}{1+\left( -\dfrac{2}{3} \right)\left( -2 \right)} \right| \\
& =\left| \dfrac{-\dfrac{2}{3}+2}{1+\dfrac{4}{3}} \right| \\
& =\left| \dfrac{2-\dfrac{2}{3}}{1+\dfrac{4}{3}} \right| \\
& =\left| \dfrac{\dfrac{6-2}{3}}{\dfrac{3+4}{3}} \right| \\
& =\dfrac{4}{7} \\
\end{align}$
Therefore, we have showed that,
(i) $\tan A=2$
(ii) $\tan B=\dfrac{2}{3}$
(iii) $\tan C=\dfrac{4}{7}$
Note: To solve these type of question it is important to note that we have used the fact that the angle between two lines with slope ${{m}_{1}},{{m}_{2}}\ is\ \tan \theta =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$ and the the slope of line passing through two points is $\left( {{x}_{1}},{{y}_{1}} \right)\ and\ \left( {{x}_{2}},{{y}_{2}} \right)\ is\ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

