
If a > 0 and \[z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}\] , has magnitude $\sqrt{\dfrac{2}{5}}$then $\overline{z}$ is equal to:
(a). $-\dfrac{3}{5}-\dfrac{1}{5}i$
(b). $-\dfrac{1}{5}+\dfrac{3}{5}i$
(c). $-\dfrac{1}{5}-\dfrac{3}{5}i$
(d). $\dfrac{1}{5}-\dfrac{3}{5}i$
Answer
570.9k+ views
Hint: While solving this question we will simplify the given $z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}$ and using the magnitude of z is given as $\sqrt{\dfrac{2}{5}}$ . This will give us the value of z and this will conclude as with the value of $\overline{z}$ as we know that $\bar{z}=x-iy$ where $z=x+iy$.
Complete step by step answer:
From the question we have that
$z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}$
We will now simplify this using ${{i}^{2}}=-1$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
And after some simple modifications we will multiply and divide the whole equation with $\left( a+i \right)$.
$\begin{align}
& z=\dfrac{1+{{i}^{2}}+2i}{a-i} \\
& \Rightarrow z=\dfrac{1-1+2i}{a-i} \\
& \Rightarrow z=\dfrac{2i}{a-i}\left( \dfrac{a+i}{a+i} \right) \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}-{{i}^{2}}} \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}+1} \\
& \Rightarrow z=\dfrac{2ai+2{{i}^{2}}}{{{a}^{2}}+1} \\
& \Rightarrow z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1} \\
\end{align}$
Here we have the value of
$z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1}$
From the question it is given that the magnitude of $z$ is equal to $\sqrt{\dfrac{2}{5}}$.
As we know from the concept that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$.
$\begin{align}
& z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+i} \\
& \left| z \right|=\sqrt{{{\left( -\dfrac{2}{{{a}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{2a}{{{a}^{2}}+1} \right)}^{2}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{4+4{{a}^{2}}}{{{\left( {{a}^{2}}+1 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\dfrac{2\sqrt{1+{{a}^{2}}}}{{{a}^{2}}+1} \\
& \Rightarrow \left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
\end{align}$
Here we have the magnitude of $\left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}}$
By comparing this with given value in question we will get the value of a,
$\begin{align}
& \sqrt{\dfrac{2}{5}}=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{2}}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \sqrt{{{a}^{2}}+1}=\sqrt{10} \\
& \Rightarrow a=\pm 3 \\
\end{align}$
Given in the question that $a > 0$, so the value of a=+3
By using this value of a z will be
$z=-\dfrac{1}{5}+i\dfrac{3}{5}$
As we know from the concept that the value will be $\bar{z}=x-iy$ for the $z=x+iy$.
$\bar{z}=-\dfrac{1}{5}-i\dfrac{3}{5}$
So, the correct answer is “Option C”.
Note: While solving these types of questions we should take care while performing the simplifications. We know that $\bar{z}=x-iy$ for the $z=x+iy$ not $\bar{z}=-x+iy$ for the $z=x+iy$.
Here from the concept we know that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$ not${{x}^{2}}+{{y}^{2}}$. If we commit a small mistake even we will conclude with a complete wrong answer.
Complete step by step answer:
From the question we have that
$z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}$
We will now simplify this using ${{i}^{2}}=-1$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
And after some simple modifications we will multiply and divide the whole equation with $\left( a+i \right)$.
$\begin{align}
& z=\dfrac{1+{{i}^{2}}+2i}{a-i} \\
& \Rightarrow z=\dfrac{1-1+2i}{a-i} \\
& \Rightarrow z=\dfrac{2i}{a-i}\left( \dfrac{a+i}{a+i} \right) \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}-{{i}^{2}}} \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}+1} \\
& \Rightarrow z=\dfrac{2ai+2{{i}^{2}}}{{{a}^{2}}+1} \\
& \Rightarrow z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1} \\
\end{align}$
Here we have the value of
$z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1}$
From the question it is given that the magnitude of $z$ is equal to $\sqrt{\dfrac{2}{5}}$.
As we know from the concept that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$.
$\begin{align}
& z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+i} \\
& \left| z \right|=\sqrt{{{\left( -\dfrac{2}{{{a}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{2a}{{{a}^{2}}+1} \right)}^{2}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{4+4{{a}^{2}}}{{{\left( {{a}^{2}}+1 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\dfrac{2\sqrt{1+{{a}^{2}}}}{{{a}^{2}}+1} \\
& \Rightarrow \left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
\end{align}$
Here we have the magnitude of $\left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}}$
By comparing this with given value in question we will get the value of a,
$\begin{align}
& \sqrt{\dfrac{2}{5}}=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{2}}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \sqrt{{{a}^{2}}+1}=\sqrt{10} \\
& \Rightarrow a=\pm 3 \\
\end{align}$
Given in the question that $a > 0$, so the value of a=+3
By using this value of a z will be
$z=-\dfrac{1}{5}+i\dfrac{3}{5}$
As we know from the concept that the value will be $\bar{z}=x-iy$ for the $z=x+iy$.
$\bar{z}=-\dfrac{1}{5}-i\dfrac{3}{5}$
So, the correct answer is “Option C”.
Note: While solving these types of questions we should take care while performing the simplifications. We know that $\bar{z}=x-iy$ for the $z=x+iy$ not $\bar{z}=-x+iy$ for the $z=x+iy$.
Here from the concept we know that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$ not${{x}^{2}}+{{y}^{2}}$. If we commit a small mistake even we will conclude with a complete wrong answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

