
If a > 0 and \[z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}\] , has magnitude $\sqrt{\dfrac{2}{5}}$then $\overline{z}$ is equal to:
(a). $-\dfrac{3}{5}-\dfrac{1}{5}i$
(b). $-\dfrac{1}{5}+\dfrac{3}{5}i$
(c). $-\dfrac{1}{5}-\dfrac{3}{5}i$
(d). $\dfrac{1}{5}-\dfrac{3}{5}i$
Answer
584.1k+ views
Hint: While solving this question we will simplify the given $z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}$ and using the magnitude of z is given as $\sqrt{\dfrac{2}{5}}$ . This will give us the value of z and this will conclude as with the value of $\overline{z}$ as we know that $\bar{z}=x-iy$ where $z=x+iy$.
Complete step by step answer:
From the question we have that
$z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}$
We will now simplify this using ${{i}^{2}}=-1$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
And after some simple modifications we will multiply and divide the whole equation with $\left( a+i \right)$.
$\begin{align}
& z=\dfrac{1+{{i}^{2}}+2i}{a-i} \\
& \Rightarrow z=\dfrac{1-1+2i}{a-i} \\
& \Rightarrow z=\dfrac{2i}{a-i}\left( \dfrac{a+i}{a+i} \right) \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}-{{i}^{2}}} \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}+1} \\
& \Rightarrow z=\dfrac{2ai+2{{i}^{2}}}{{{a}^{2}}+1} \\
& \Rightarrow z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1} \\
\end{align}$
Here we have the value of
$z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1}$
From the question it is given that the magnitude of $z$ is equal to $\sqrt{\dfrac{2}{5}}$.
As we know from the concept that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$.
$\begin{align}
& z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+i} \\
& \left| z \right|=\sqrt{{{\left( -\dfrac{2}{{{a}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{2a}{{{a}^{2}}+1} \right)}^{2}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{4+4{{a}^{2}}}{{{\left( {{a}^{2}}+1 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\dfrac{2\sqrt{1+{{a}^{2}}}}{{{a}^{2}}+1} \\
& \Rightarrow \left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
\end{align}$
Here we have the magnitude of $\left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}}$
By comparing this with given value in question we will get the value of a,
$\begin{align}
& \sqrt{\dfrac{2}{5}}=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{2}}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \sqrt{{{a}^{2}}+1}=\sqrt{10} \\
& \Rightarrow a=\pm 3 \\
\end{align}$
Given in the question that $a > 0$, so the value of a=+3
By using this value of a z will be
$z=-\dfrac{1}{5}+i\dfrac{3}{5}$
As we know from the concept that the value will be $\bar{z}=x-iy$ for the $z=x+iy$.
$\bar{z}=-\dfrac{1}{5}-i\dfrac{3}{5}$
So, the correct answer is “Option C”.
Note: While solving these types of questions we should take care while performing the simplifications. We know that $\bar{z}=x-iy$ for the $z=x+iy$ not $\bar{z}=-x+iy$ for the $z=x+iy$.
Here from the concept we know that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$ not${{x}^{2}}+{{y}^{2}}$. If we commit a small mistake even we will conclude with a complete wrong answer.
Complete step by step answer:
From the question we have that
$z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}$
We will now simplify this using ${{i}^{2}}=-1$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
And after some simple modifications we will multiply and divide the whole equation with $\left( a+i \right)$.
$\begin{align}
& z=\dfrac{1+{{i}^{2}}+2i}{a-i} \\
& \Rightarrow z=\dfrac{1-1+2i}{a-i} \\
& \Rightarrow z=\dfrac{2i}{a-i}\left( \dfrac{a+i}{a+i} \right) \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}-{{i}^{2}}} \\
& \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}+1} \\
& \Rightarrow z=\dfrac{2ai+2{{i}^{2}}}{{{a}^{2}}+1} \\
& \Rightarrow z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1} \\
\end{align}$
Here we have the value of
$z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1}$
From the question it is given that the magnitude of $z$ is equal to $\sqrt{\dfrac{2}{5}}$.
As we know from the concept that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$.
$\begin{align}
& z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+i} \\
& \left| z \right|=\sqrt{{{\left( -\dfrac{2}{{{a}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{2a}{{{a}^{2}}+1} \right)}^{2}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{4+4{{a}^{2}}}{{{\left( {{a}^{2}}+1 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\dfrac{2\sqrt{1+{{a}^{2}}}}{{{a}^{2}}+1} \\
& \Rightarrow \left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
\end{align}$
Here we have the magnitude of $\left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}}$
By comparing this with given value in question we will get the value of a,
$\begin{align}
& \sqrt{\dfrac{2}{5}}=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{2}}{\sqrt{{{a}^{2}}+1}} \\
& \Rightarrow \sqrt{{{a}^{2}}+1}=\sqrt{10} \\
& \Rightarrow a=\pm 3 \\
\end{align}$
Given in the question that $a > 0$, so the value of a=+3
By using this value of a z will be
$z=-\dfrac{1}{5}+i\dfrac{3}{5}$
As we know from the concept that the value will be $\bar{z}=x-iy$ for the $z=x+iy$.
$\bar{z}=-\dfrac{1}{5}-i\dfrac{3}{5}$
So, the correct answer is “Option C”.
Note: While solving these types of questions we should take care while performing the simplifications. We know that $\bar{z}=x-iy$ for the $z=x+iy$ not $\bar{z}=-x+iy$ for the $z=x+iy$.
Here from the concept we know that the magnitude of $z=x+iy$ will be $\sqrt{{{x}^{2}}+{{y}^{2}}}$ not${{x}^{2}}+{{y}^{2}}$. If we commit a small mistake even we will conclude with a complete wrong answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

