
If $a + b = 8$ and $ab = 6$ , find the value of ${a^3} + {b^3}$
Answer
556.8k+ views
Hint: We can substitute the given equations in the binomial expansion of ${\left( {a + b} \right)^3}$ . Then we can rearrange and simplify the equation to get the required answer.
Complete step by step solution:
Given $a + b = 8$ and $ab = 6$
When we look at the expression ${a^3} + {b^3}$ , we can see that they are the 1st and last terms of binomial expansion of ${\left( {a + b} \right)^3}$ . The expansion of ${\left( {a + b} \right)^3}$ is given by,
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$
Taking common terms $3ab$ from the middle terms, we get,
${\left( {a + b} \right)^3} = {a^3} + 3ab\left( {a + b} \right) + {b^3}$
On subtracting both sides with $3ab\left( {a + b} \right)$ , we get,
${a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)$
From the question, we have, $a + b = 8$ and $ab = 6$
On substituting the values in above equation, we get,
$ \Rightarrow {a^3} + {b^3} = {\left( 8 \right)^3} - 3 \times 6 \times \left( 8 \right)$
On simplifying we get,
$ \Rightarrow {a^3} + {b^3} = 512 - 144$
$ \Rightarrow {a^3} + {b^3} = 368$
Therefore, the value of ${a^3} + {b^3}$ is 368.
Note: We use the concept of binomial expansion to solve the problem. Binomial expansion of any positive integer can be found using the equation
${\left( {a + b} \right)^n} = {a^n} + \left( {{}^n{c_1}} \right){a^{n - 1}}b + \left( {{}^n{c_2}} \right){a^{n - 2}}{b^2} + \ldots + \left( {{}^n{c_{n - 1}}} \right)a{b^{n - 1}} + {b^n}$
When $n = 3$ , we get,
${\left( {a + b} \right)^3} = {a^3} + \left( {{}^3{C_1}} \right){a^2}b + \left( {{}^3{C_2}} \right){a^1}{b^2} + {b^3}$
We know that $\left( {{}^3{C_1}} \right) = \left( {{}^3{C_2}} \right) = 3$
$ \Rightarrow {\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$
This the equation we used in the problem.
Complete step by step solution:
Given $a + b = 8$ and $ab = 6$
When we look at the expression ${a^3} + {b^3}$ , we can see that they are the 1st and last terms of binomial expansion of ${\left( {a + b} \right)^3}$ . The expansion of ${\left( {a + b} \right)^3}$ is given by,
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$
Taking common terms $3ab$ from the middle terms, we get,
${\left( {a + b} \right)^3} = {a^3} + 3ab\left( {a + b} \right) + {b^3}$
On subtracting both sides with $3ab\left( {a + b} \right)$ , we get,
${a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)$
From the question, we have, $a + b = 8$ and $ab = 6$
On substituting the values in above equation, we get,
$ \Rightarrow {a^3} + {b^3} = {\left( 8 \right)^3} - 3 \times 6 \times \left( 8 \right)$
On simplifying we get,
$ \Rightarrow {a^3} + {b^3} = 512 - 144$
$ \Rightarrow {a^3} + {b^3} = 368$
Therefore, the value of ${a^3} + {b^3}$ is 368.
Note: We use the concept of binomial expansion to solve the problem. Binomial expansion of any positive integer can be found using the equation
${\left( {a + b} \right)^n} = {a^n} + \left( {{}^n{c_1}} \right){a^{n - 1}}b + \left( {{}^n{c_2}} \right){a^{n - 2}}{b^2} + \ldots + \left( {{}^n{c_{n - 1}}} \right)a{b^{n - 1}} + {b^n}$
When $n = 3$ , we get,
${\left( {a + b} \right)^3} = {a^3} + \left( {{}^3{C_1}} \right){a^2}b + \left( {{}^3{C_2}} \right){a^1}{b^2} + {b^3}$
We know that $\left( {{}^3{C_1}} \right) = \left( {{}^3{C_2}} \right) = 3$
$ \Rightarrow {\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$
This the equation we used in the problem.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

