
If ${\text{A + B + }}{\text{C = }}{180^o}$, then the value of $\left( {\cot B + \cot C} \right)\left( {\cot C + \cot A} \right)\left( {\cot A + \cot B} \right)$ will be
$\left( a \right)$ Sec A sec B sec C
$\left( b \right)$ Cosec A cosec B cosec C
$\left( c \right)$ Tan A tan B tan C
$\left( d \right)$ 1
Answer
582.6k+ views
Hint: In this particular question use the concept that cot x = (cos x/sin x) and use the concept that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, and use the concept that $\sin \left( {180 - x} \right) = \sin x$ so use these concepts to reach the solution of the question.
Complete step by step answer:
${\text{A + B + }}{\text{C = }}{180^o}$............... (1)
Now we have to find out the value of,
$\left( {\cot B + \cot C} \right)\left( {\cot C + \cot A} \right)\left( {\cot A + \cot B} \right)$
Now as we know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$ so use these properties in the above equation we have,
$ \Rightarrow \left( {\dfrac{{\cos B}}{{\sin B}} + \dfrac{{\cos C}}{{\sin C}}} \right)\left( {\dfrac{{\cos C}}{{\sin C}} + \dfrac{{\cos A}}{{\sin A}}} \right)\left( {\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\cos B}}{{\sin B}}} \right)$
Now simplify it we have,
\[ \Rightarrow \left( {\dfrac{{\cos B\sin C + \sin B\cos C}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\cos C\sin A + \sin C\cos A}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\cos A\sin B + \sin A\cos B}}{{\sin A\sin B}}} \right)\]
Now as we know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, so use this property in the above equation we have,
\[ \Rightarrow \left( {\dfrac{{\sin \left( {B + C} \right)}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\sin \left( {A + C} \right)}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\sin \left( {A + B} \right)}}{{\sin A\sin B}}} \right)\]
Now from equation (1),
$ \Rightarrow A + B = {180^o} - C$
$ \Rightarrow B + C = {180^o} - A$
$ \Rightarrow C + A = {180^o} - B$
So substitute these values in the above equation we have,
\[ \Rightarrow \left( {\dfrac{{\sin \left( {{{180}^o} - A} \right)}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\sin \left( {{{180}^o} - B} \right)}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\sin \left( {{{180}^o} - C} \right)}}{{\sin A\sin B}}} \right)\]
Now as we know that $\sin \left( {180 - x} \right) = \sin x$ so we have,
\[ \Rightarrow \left( {\dfrac{{\sin A}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\sin B}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\sin C}}{{\sin A\sin B}}} \right)\]
Now on simplifying we get
\[ \Rightarrow \left( {\dfrac{1}{{\sin A\sin B\sin C}}} \right)\]
Now as we know that $\cos ecx = \dfrac{1}{{\sin x}}$ so we have,
$ \Rightarrow \left( {\cot B + \cot C} \right)\left( {\cot C + \cot A} \right)\left( {\cot A + \cot B} \right) = \left( {\dfrac{1}{{\sin A\sin B\sin C}}} \right) = $ Cosec A cosec B cosec C.
So this is the required answer.
So, the correct answer is “Option B”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric properties which are all stated above so use these properties as above and simplify the given equation we will get the required answer. One thing keep in mind that simplify the equation step by step as above simplified otherwise we will get an incorrect answer.
Complete step by step answer:
${\text{A + B + }}{\text{C = }}{180^o}$............... (1)
Now we have to find out the value of,
$\left( {\cot B + \cot C} \right)\left( {\cot C + \cot A} \right)\left( {\cot A + \cot B} \right)$
Now as we know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$ so use these properties in the above equation we have,
$ \Rightarrow \left( {\dfrac{{\cos B}}{{\sin B}} + \dfrac{{\cos C}}{{\sin C}}} \right)\left( {\dfrac{{\cos C}}{{\sin C}} + \dfrac{{\cos A}}{{\sin A}}} \right)\left( {\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\cos B}}{{\sin B}}} \right)$
Now simplify it we have,
\[ \Rightarrow \left( {\dfrac{{\cos B\sin C + \sin B\cos C}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\cos C\sin A + \sin C\cos A}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\cos A\sin B + \sin A\cos B}}{{\sin A\sin B}}} \right)\]
Now as we know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, so use this property in the above equation we have,
\[ \Rightarrow \left( {\dfrac{{\sin \left( {B + C} \right)}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\sin \left( {A + C} \right)}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\sin \left( {A + B} \right)}}{{\sin A\sin B}}} \right)\]
Now from equation (1),
$ \Rightarrow A + B = {180^o} - C$
$ \Rightarrow B + C = {180^o} - A$
$ \Rightarrow C + A = {180^o} - B$
So substitute these values in the above equation we have,
\[ \Rightarrow \left( {\dfrac{{\sin \left( {{{180}^o} - A} \right)}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\sin \left( {{{180}^o} - B} \right)}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\sin \left( {{{180}^o} - C} \right)}}{{\sin A\sin B}}} \right)\]
Now as we know that $\sin \left( {180 - x} \right) = \sin x$ so we have,
\[ \Rightarrow \left( {\dfrac{{\sin A}}{{\sin B\sin C}}} \right)\left( {\dfrac{{\sin B}}{{\sin C\sin A}}} \right)\left( {\dfrac{{\sin C}}{{\sin A\sin B}}} \right)\]
Now on simplifying we get
\[ \Rightarrow \left( {\dfrac{1}{{\sin A\sin B\sin C}}} \right)\]
Now as we know that $\cos ecx = \dfrac{1}{{\sin x}}$ so we have,
$ \Rightarrow \left( {\cot B + \cot C} \right)\left( {\cot C + \cot A} \right)\left( {\cot A + \cot B} \right) = \left( {\dfrac{1}{{\sin A\sin B\sin C}}} \right) = $ Cosec A cosec B cosec C.
So this is the required answer.
So, the correct answer is “Option B”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric properties which are all stated above so use these properties as above and simplify the given equation we will get the required answer. One thing keep in mind that simplify the equation step by step as above simplified otherwise we will get an incorrect answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

