
If \[A+B+C=\pi \] then \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C=2\sin A\cos B\sin C\].
Answer
584.1k+ views
Hint: Let us assume the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C\] is equal to X. Let us substitute \[C=\pi -(A+B)\] in X. We know that \[\sin \left( \pi -\theta \right)=\sin \theta \]. We know that \[\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A\]. We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. We know that \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]. We know that \[{{\cos }^{2}}B-{{\sin }^{2}}B=\cos 2B\]. By using these concepts, we can find the value of X.
Complete step by step answer:
From the question, we were given that \[A+B+C=\pi \].
Now we should find the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C\]. Let us assume the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C\] is equal to X.
\[\Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}\left( \pi -\left( A+B \right) \right)\]
We know that \[\sin \left( \pi -\theta \right)=\sin \theta \].
\[\Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}\left( A+B \right)\]
We know that \[\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A\].
\[\Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\left( \sin A\cos B+\sin B\cos A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
\[\begin{align}
& \Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}B{{\cos }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B+2\operatorname{sinBcosAsinAcosB} \\
& \Rightarrow X={{\sin }^{2}}A\left( 1+{{\cos }^{2}}B \right)-{{\sin }^{2}}B\left( 1-{{\cos }^{2}}A \right)+2\sin B\cos A\sin A\cos B \\
\end{align}\]
We know that \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \].
\[\begin{align}
& \Rightarrow X={{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}B{{\sin }^{2}}A+2\sin B\cos A\sin A\cos B \\
& \Rightarrow X={{\sin }^{2}}A\left( 1+{{\cos }^{2}}B-{{\sin }^{2}}B \right)+2\sin B\cos A\sin A\cos B \\
\end{align}\]
We know that \[{{\cos }^{2}}B-{{\sin }^{2}}B=\cos 2B\].
\[\Rightarrow X={{\sin }^{2}}A\left( 1+\cos 2B \right)+2\sin B\cos A\sin A\cos B\]
We know that \[1+\cos 2B=2{{\cos }^{2}}B\].
\[\Rightarrow X={{\sin }^{2}}A\left( 2{{\cos }^{2}}B \right)+2\sin B\cos A\sin A\cos B\]
\[\Rightarrow X=2\sin A\cos B\left( \sin A\cos B+\sin B\cos A \right)\]
We know that \[\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A\].
\[\Rightarrow X=2\sin A\cos B\sin \left( A+B \right)\]
We know that \[\sin \left( \pi -\theta \right)=\sin \theta \].
\[\Rightarrow X=2\sin A\cos B\sin \left( \pi -\left( A+B \right) \right)\]
\[\begin{align}
& \Rightarrow X=2\sin A\cos B\operatorname{sinC} \\
& \\
\end{align}\]
So, we can say that if \[A+B+C=\pi \] then \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C=2\sin A\cos B\sin C\].
Note:
Students may have misconception that \[\sin \left( A+B \right)=\sin A\cos B-\sin B\cos A\]. If this misconception is followed, then we cannot get the correct value of X. So, this misconception should be avoided to get the correct answer and to obtain the proof in a correct manner.
Complete step by step answer:
From the question, we were given that \[A+B+C=\pi \].
Now we should find the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C\]. Let us assume the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C\] is equal to X.
\[\Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}\left( \pi -\left( A+B \right) \right)\]
We know that \[\sin \left( \pi -\theta \right)=\sin \theta \].
\[\Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}\left( A+B \right)\]
We know that \[\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A\].
\[\Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\left( \sin A\cos B+\sin B\cos A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
\[\begin{align}
& \Rightarrow X={{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}B{{\cos }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B+2\operatorname{sinBcosAsinAcosB} \\
& \Rightarrow X={{\sin }^{2}}A\left( 1+{{\cos }^{2}}B \right)-{{\sin }^{2}}B\left( 1-{{\cos }^{2}}A \right)+2\sin B\cos A\sin A\cos B \\
\end{align}\]
We know that \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \].
\[\begin{align}
& \Rightarrow X={{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}B{{\sin }^{2}}A+2\sin B\cos A\sin A\cos B \\
& \Rightarrow X={{\sin }^{2}}A\left( 1+{{\cos }^{2}}B-{{\sin }^{2}}B \right)+2\sin B\cos A\sin A\cos B \\
\end{align}\]
We know that \[{{\cos }^{2}}B-{{\sin }^{2}}B=\cos 2B\].
\[\Rightarrow X={{\sin }^{2}}A\left( 1+\cos 2B \right)+2\sin B\cos A\sin A\cos B\]
We know that \[1+\cos 2B=2{{\cos }^{2}}B\].
\[\Rightarrow X={{\sin }^{2}}A\left( 2{{\cos }^{2}}B \right)+2\sin B\cos A\sin A\cos B\]
\[\Rightarrow X=2\sin A\cos B\left( \sin A\cos B+\sin B\cos A \right)\]
We know that \[\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A\].
\[\Rightarrow X=2\sin A\cos B\sin \left( A+B \right)\]
We know that \[\sin \left( \pi -\theta \right)=\sin \theta \].
\[\Rightarrow X=2\sin A\cos B\sin \left( \pi -\left( A+B \right) \right)\]
\[\begin{align}
& \Rightarrow X=2\sin A\cos B\operatorname{sinC} \\
& \\
\end{align}\]
So, we can say that if \[A+B+C=\pi \] then \[{{\sin }^{2}}A-{{\sin }^{2}}B+{{\sin }^{2}}C=2\sin A\cos B\sin C\].
Note:
Students may have misconception that \[\sin \left( A+B \right)=\sin A\cos B-\sin B\cos A\]. If this misconception is followed, then we cannot get the correct value of X. So, this misconception should be avoided to get the correct answer and to obtain the proof in a correct manner.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

