
If $A+B+C=\pi $, prove that $\sin A+\sin B-\sin C=4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\cos \dfrac{C}{2}$.
Answer
614.4k+ views
Hint: For solving this question we will use some trigonometric formula like formula for $\sin C+\sin D$ , $\cos C-\cos D$ and $\sin 2\theta $ for simplifying the term written on the left-hand side. After that, we will prove it equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\sin A+\sin B-\sin C=4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\cos \dfrac{C}{2}$
Now, before we proceed we should know the following five formulas:
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)........................\left( 1 \right) \\
& \cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)........................\left( 2 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta ...........................................................\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \left( \dfrac{A+B}{2} \right)=\dfrac{\pi }{2}-\dfrac{C}{2} \\
& \Rightarrow \sin \left( \dfrac{A+B}{2} \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{C}{2} \right)=\cos \dfrac{C}{2}..............................\left( 4 \right) \\
& \Rightarrow \cos \left( \dfrac{A+B}{2} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{C}{2} \right)=\sin \dfrac{C}{2}..............................\left( 5 \right) \\
\end{align}$
Now, we will be using the above five formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\sin A+\sin B-\sin C$ so, using the formula from the equation (1).
Then,
$\begin{align}
& \sin A+\sin B-\sin C \\
& \Rightarrow 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin C \\
\end{align}$
Now, using the formula from equation (4) and equation (3). Then,
$\begin{align}
& 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin C \\
& \Rightarrow 2\cos \dfrac{C}{2}\cos \left( \dfrac{A-B}{2} \right)-2\sin \dfrac{C}{2}\cos \dfrac{C}{2} \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( \cos \left( \dfrac{A-B}{2} \right)-\sin \dfrac{C}{2} \right) \\
\end{align}$
Now, using the formula form equation (5) and equation (2). Then,
$\begin{align}
& 2\cos \dfrac{C}{2}\left( \cos \left( \dfrac{A-B}{2} \right)-\sin \dfrac{C}{2} \right) \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( \cos \left( \dfrac{A-B}{2} \right)-\cos \left( \dfrac{A+B}{2} \right) \right) \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( 2\sin \left( \dfrac{{}^{A}/{}_{2}-{}^{B}/{}_{2}+{}^{A}/{}_{2}+{}^{B}/{}_{2}}{2} \right)\sin \left( \dfrac{{}^{A}/{}_{2}+{}^{B}/{}_{2}-{}^{A}/{}_{2}-{}^{B}/{}_{2}}{2} \right) \right) \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( 2\sin \dfrac{A}{2}\sin \dfrac{B}{2} \right) \\
& \Rightarrow 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}\cos \dfrac{C}{2} \\
\end{align}$
Now, from the above result, we can say that $\sin A+\sin B-\sin C=4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\cos \dfrac{C}{2}$.
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\sin C+\sin D$ , $\cos C-\cos D$ and $\sin 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\sin A+\sin B-\sin C=4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\cos \dfrac{C}{2}$
Now, before we proceed we should know the following five formulas:
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)........................\left( 1 \right) \\
& \cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)........................\left( 2 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta ...........................................................\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \left( \dfrac{A+B}{2} \right)=\dfrac{\pi }{2}-\dfrac{C}{2} \\
& \Rightarrow \sin \left( \dfrac{A+B}{2} \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{C}{2} \right)=\cos \dfrac{C}{2}..............................\left( 4 \right) \\
& \Rightarrow \cos \left( \dfrac{A+B}{2} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{C}{2} \right)=\sin \dfrac{C}{2}..............................\left( 5 \right) \\
\end{align}$
Now, we will be using the above five formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\sin A+\sin B-\sin C$ so, using the formula from the equation (1).
Then,
$\begin{align}
& \sin A+\sin B-\sin C \\
& \Rightarrow 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin C \\
\end{align}$
Now, using the formula from equation (4) and equation (3). Then,
$\begin{align}
& 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin C \\
& \Rightarrow 2\cos \dfrac{C}{2}\cos \left( \dfrac{A-B}{2} \right)-2\sin \dfrac{C}{2}\cos \dfrac{C}{2} \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( \cos \left( \dfrac{A-B}{2} \right)-\sin \dfrac{C}{2} \right) \\
\end{align}$
Now, using the formula form equation (5) and equation (2). Then,
$\begin{align}
& 2\cos \dfrac{C}{2}\left( \cos \left( \dfrac{A-B}{2} \right)-\sin \dfrac{C}{2} \right) \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( \cos \left( \dfrac{A-B}{2} \right)-\cos \left( \dfrac{A+B}{2} \right) \right) \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( 2\sin \left( \dfrac{{}^{A}/{}_{2}-{}^{B}/{}_{2}+{}^{A}/{}_{2}+{}^{B}/{}_{2}}{2} \right)\sin \left( \dfrac{{}^{A}/{}_{2}+{}^{B}/{}_{2}-{}^{A}/{}_{2}-{}^{B}/{}_{2}}{2} \right) \right) \\
& \Rightarrow 2\cos \dfrac{C}{2}\left( 2\sin \dfrac{A}{2}\sin \dfrac{B}{2} \right) \\
& \Rightarrow 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}\cos \dfrac{C}{2} \\
\end{align}$
Now, from the above result, we can say that $\sin A+\sin B-\sin C=4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\cos \dfrac{C}{2}$.
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\sin C+\sin D$ , $\cos C-\cos D$ and $\sin 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

