
If $A+B+C=\pi $, prove that ${{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\cos C$.
Answer
614.4k+ views
Hint: For solving this question as there are squares of trigonometric ratios so, we will trigonometric formulas like formula for $\cos 2\theta $ and then further for simplifying the term written on the left-hand side we will use formulas for $\cos C+\cos D$, $\cos C-\cos D$ and $\cos \left( \pi -\theta \right)$. After that, we will prove the term on the left-hand side is equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
${{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\cos C$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \cos 2\theta =2{{\cos }^{2}}\theta -1 \\
& \Rightarrow 2{{\cos }^{2}}\theta =\cos 2\theta +1 \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2}................................\left( 1 \right) \\
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..................\left( 2 \right) \\
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right).................\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C.............................\left( 4 \right) \\
\end{align}$
Now, we will be using the above four formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to ${{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C$ so, using the formula from equation (1). Then,
$\begin{align}
& {{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1+\cos 2A}{2}+\dfrac{1+\cos 2B}{2}-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 1+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from equation (2) in the above equation. Then,
$\begin{align}
& 1+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 1+\dfrac{1}{2}\left( 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right) \right)-{{\cos }^{2}}C \\
& \Rightarrow 1+\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from equation (4) in the above equation. Then,
$\begin{align}
& 1+\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 1-\cos c\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 1+\cos C\left( -\cos C-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from equation (3) in the above equation. Then,
$\begin{align}
& 1+\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+\cos C\left( -2\sin \left( \dfrac{A+B+A-B}{2} \right)\sin \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 1+\cos C\left( -2\sin A\sin B \right) \\
& \Rightarrow 1-2\sin A\sin B\cos C \\
\end{align}$
Now, from the above result we can say that ${{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\cos C$.
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification process smooth, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\cos C+\cos D$ , $\cos C-\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
${{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\cos C$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \cos 2\theta =2{{\cos }^{2}}\theta -1 \\
& \Rightarrow 2{{\cos }^{2}}\theta =\cos 2\theta +1 \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2}................................\left( 1 \right) \\
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..................\left( 2 \right) \\
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right).................\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C.............................\left( 4 \right) \\
\end{align}$
Now, we will be using the above four formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to ${{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C$ so, using the formula from equation (1). Then,
$\begin{align}
& {{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1+\cos 2A}{2}+\dfrac{1+\cos 2B}{2}-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 1+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from equation (2) in the above equation. Then,
$\begin{align}
& 1+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 1+\dfrac{1}{2}\left( 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right) \right)-{{\cos }^{2}}C \\
& \Rightarrow 1+\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from equation (4) in the above equation. Then,
$\begin{align}
& 1+\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 1-\cos c\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 1+\cos C\left( -\cos C-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from equation (3) in the above equation. Then,
$\begin{align}
& 1+\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+\cos C\left( -2\sin \left( \dfrac{A+B+A-B}{2} \right)\sin \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 1+\cos C\left( -2\sin A\sin B \right) \\
& \Rightarrow 1-2\sin A\sin B\cos C \\
\end{align}$
Now, from the above result we can say that ${{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\cos C$.
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification process smooth, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\cos C+\cos D$ , $\cos C-\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

