
If $A+B+C=\pi $ , prove that $\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$ .
Answer
614.1k+ views
Hint: For solving this question we will use some trigonometric formula like formula for $\cos C+\cos D$ and $\cos 2\theta $ for simplifying the term written on the left-hand side. After that, we will prove it equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$
Now, before we proceed we should know the following three formulas:
$\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..............................\left( 1 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C.......................................\left( 2 \right) \\
& \cos 2\theta =2{{\cos }^{2}}\theta -1...................................................................\left( 3 \right) \\
\end{align}$
Now, we will be using the above three formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\cos 2A+\cos 2B+\cos 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \cos 2A+\cos 2B+\cos 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+\cos 2C \\
& \Rightarrow 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
\end{align}$
Now, using the formula from equation (2) and equation (3) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
& \Rightarrow -2\cos C\cos \left( A-B \right)+2{{\cos }^{2}}C-1 \\
& \Rightarrow -1-2\cos C\left( -\cos C+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (1) in the above equation. Then,
$\begin{align}
& -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\cos \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos A\cos B \right) \\
& \Rightarrow -1-4\cos A\cos B\cos C \\
\end{align}$
Now, from the above result, we can say that $\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$.
Thus, $L.H.S=R.H.S$.
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formula $\cos C+\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$
Now, before we proceed we should know the following three formulas:
$\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..............................\left( 1 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C.......................................\left( 2 \right) \\
& \cos 2\theta =2{{\cos }^{2}}\theta -1...................................................................\left( 3 \right) \\
\end{align}$
Now, we will be using the above three formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\cos 2A+\cos 2B+\cos 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \cos 2A+\cos 2B+\cos 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+\cos 2C \\
& \Rightarrow 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
\end{align}$
Now, using the formula from equation (2) and equation (3) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
& \Rightarrow -2\cos C\cos \left( A-B \right)+2{{\cos }^{2}}C-1 \\
& \Rightarrow -1-2\cos C\left( -\cos C+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (1) in the above equation. Then,
$\begin{align}
& -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\cos \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos A\cos B \right) \\
& \Rightarrow -1-4\cos A\cos B\cos C \\
\end{align}$
Now, from the above result, we can say that $\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$.
Thus, $L.H.S=R.H.S$.
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formula $\cos C+\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

