
If $A+B+C=\pi $ , prove that $\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$ .
Answer
602.1k+ views
Hint: For solving this question we will use some trigonometric formula like formula for $\cos C+\cos D$ and $\cos 2\theta $ for simplifying the term written on the left-hand side. After that, we will prove it equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$
Now, before we proceed we should know the following three formulas:
$\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..............................\left( 1 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C.......................................\left( 2 \right) \\
& \cos 2\theta =2{{\cos }^{2}}\theta -1...................................................................\left( 3 \right) \\
\end{align}$
Now, we will be using the above three formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\cos 2A+\cos 2B+\cos 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \cos 2A+\cos 2B+\cos 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+\cos 2C \\
& \Rightarrow 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
\end{align}$
Now, using the formula from equation (2) and equation (3) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
& \Rightarrow -2\cos C\cos \left( A-B \right)+2{{\cos }^{2}}C-1 \\
& \Rightarrow -1-2\cos C\left( -\cos C+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (1) in the above equation. Then,
$\begin{align}
& -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\cos \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos A\cos B \right) \\
& \Rightarrow -1-4\cos A\cos B\cos C \\
\end{align}$
Now, from the above result, we can say that $\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$.
Thus, $L.H.S=R.H.S$.
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formula $\cos C+\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$
Now, before we proceed we should know the following three formulas:
$\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..............................\left( 1 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C.......................................\left( 2 \right) \\
& \cos 2\theta =2{{\cos }^{2}}\theta -1...................................................................\left( 3 \right) \\
\end{align}$
Now, we will be using the above three formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\cos 2A+\cos 2B+\cos 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \cos 2A+\cos 2B+\cos 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+\cos 2C \\
& \Rightarrow 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
\end{align}$
Now, using the formula from equation (2) and equation (3) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\cos \left( A-B \right)+\cos 2C \\
& \Rightarrow -2\cos C\cos \left( A-B \right)+2{{\cos }^{2}}C-1 \\
& \Rightarrow -1-2\cos C\left( -\cos C+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (1) in the above equation. Then,
$\begin{align}
& -1-2\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\cos \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow -1-2\cos C\left( 2\cos A\cos B \right) \\
& \Rightarrow -1-4\cos A\cos B\cos C \\
\end{align}$
Now, from the above result, we can say that $\cos 2A+\cos 2B+\cos 2C=-1-4\cos A\cos B\cos C$.
Thus, $L.H.S=R.H.S$.
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formula $\cos C+\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

