
If $A+B+C={{270}^{\circ }}$, then $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C$ is equal to
(a)0
(b)1
(c)2
(d)3
Answer
572.1k+ views
Hint: Use the following trigonometric identities to simplify the given equation.
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
$\cos (A-B)=\cos A\cos B+\sin A\sin B$
$\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
$\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
$\cos 2A=1-2{{\sin }^{2}}A$
Complete step by step answer:
We have, if $A+B+C={{270}^{\circ }}$, then $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C=?$
Let $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C=k$.
Now,
$k=\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C...................(1)$
We know the trigonometric identity, $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Using this trigonometric identity, equation (1) becomes,
$k=\cos 2A+(\cos 2B+\cos 2C)+4\sin A\sin B\sin C$
\[=\cos 2A+\left( 2\cos \left( \dfrac{2B+2C}{2} \right)\cos \left( \dfrac{2B-2C}{2} \right) \right)+4\sin A\sin B\sin C\]
\[=\cos 2A+\left( 2\cos \left( B+C \right)\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
We are given that, $A+B+C={{270}^{\circ }}$.
On rearranging, the above can be rewritten as $B+C={{270}^{\circ }}-A$.
Substituting $B+C={{270}^{\circ }}-A$ in the equation, we obtain,
\[k=\cos 2A+2\cos \left( {{270}^{\circ }}-A \right)\cos \left( B-C \right)+4\sin A\sin B\sin C\]
We know that, $\cos ({{270}^{\circ }}-\theta )=-\sin \theta $(a proof for the same is discussed later on in this article)
Hence,
\[k=\cos 2A-2\sin A\cos \left( B-C \right)+4\sin A\sin B\sin C\]
We also know that, $\cos 2A=1-2{{\sin }^{2}}A$
Substituting $\cos 2A=1-2{{\sin }^{2}}A$ in the equation, we obtain,
\[k=1-2{{\sin }^{2}}A-2\sin A\cos \left( B-C \right)+4\sin A\sin B\sin C\]
We take $2\sin A$ common for the second and third term. The equation then becomes,
\[k=1-2\sin A\left( \sin A+\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
We are given that, $A+B+C={{270}^{\circ }}$.
On rearranging, the above can be rewritten as $A={{270}^{\circ }}-(B+C)$.
Substituting $A={{270}^{\circ }}-(B+C)$ in the equation, we get,
\[k=1-2\sin A\left( \sin \left( {{270}^{\circ }}-(B+C) \right)+\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
We know that, $\sin ({{270}^{\circ }}-\theta )=-\cos \theta $
Hence, the equation can be rewritten as,
\[k=1-2\sin A\left( -\cos \left( B+C \right)+\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
\[k=1-2\sin A\left( \cos \left( B-C \right)-\cos \left( B+C \right) \right)+4\sin A\sin B\sin C\]
We know the trigonometric identity, $\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
Using the above trigonometric identity, the equation can be rewritten as,
\[k=1-2\sin A\left( 2\sin \left( \dfrac{B+C+B-C}{2} \right)\sin \left( \dfrac{B+C-B+C}{2} \right) \right)+4\sin A\sin B\sin C\]
\[k=1-2\sin A\left( 2\sin \left( \dfrac{2B}{2} \right)\sin \left( \dfrac{2C}{2} \right) \right)+4\sin A\sin B\sin C\]
\[k=1-2\sin A.2\sin B\sin C+4\sin A\sin B\sin C\]
\[k=1-4\sin A\sin B\sin C+4\sin A\sin B\sin C\]
\[\therefore k=1\]
But, from equation (1),
$k=\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C$
$\therefore \cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C=1$
Hence, the value of $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C$at $A+B+C={{270}^{\circ }}$ is equal to 1.
So, the correct answer is “Option B”.
Note: Remembering a lot of trigonometric equations may seem tricky and confusing. But, we can easily derive any of the trigonometric equations from the very basic trigonometric equations.
For example,
$\cos \left( {{270}^{\circ }}-\theta \right)=-\sin \theta $. One can easily go wrong with signs of such equations. If we look at the LHS of this equation we can see that it is in the form of the trigonometric identity$\cos (A-B)$. Using the this trigonometric equation $\cos ({{270}^{\circ }}-\theta )$ can be written as $\cos {{270}^{\circ }}\cos \theta +\sin {{270}^{\circ }}\sin \theta $.
Value of $\cos {{270}^{\circ }}=0$ and value of $\sin {{270}^{\circ }}=-1$
Hence, $\cos ({{270}^{\circ }}-\theta )=(-1)\sin \theta =-\sin \theta $
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
$\cos (A-B)=\cos A\cos B+\sin A\sin B$
$\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
$\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
$\cos 2A=1-2{{\sin }^{2}}A$
Complete step by step answer:
We have, if $A+B+C={{270}^{\circ }}$, then $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C=?$
Let $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C=k$.
Now,
$k=\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C...................(1)$
We know the trigonometric identity, $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Using this trigonometric identity, equation (1) becomes,
$k=\cos 2A+(\cos 2B+\cos 2C)+4\sin A\sin B\sin C$
\[=\cos 2A+\left( 2\cos \left( \dfrac{2B+2C}{2} \right)\cos \left( \dfrac{2B-2C}{2} \right) \right)+4\sin A\sin B\sin C\]
\[=\cos 2A+\left( 2\cos \left( B+C \right)\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
We are given that, $A+B+C={{270}^{\circ }}$.
On rearranging, the above can be rewritten as $B+C={{270}^{\circ }}-A$.
Substituting $B+C={{270}^{\circ }}-A$ in the equation, we obtain,
\[k=\cos 2A+2\cos \left( {{270}^{\circ }}-A \right)\cos \left( B-C \right)+4\sin A\sin B\sin C\]
We know that, $\cos ({{270}^{\circ }}-\theta )=-\sin \theta $(a proof for the same is discussed later on in this article)
Hence,
\[k=\cos 2A-2\sin A\cos \left( B-C \right)+4\sin A\sin B\sin C\]
We also know that, $\cos 2A=1-2{{\sin }^{2}}A$
Substituting $\cos 2A=1-2{{\sin }^{2}}A$ in the equation, we obtain,
\[k=1-2{{\sin }^{2}}A-2\sin A\cos \left( B-C \right)+4\sin A\sin B\sin C\]
We take $2\sin A$ common for the second and third term. The equation then becomes,
\[k=1-2\sin A\left( \sin A+\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
We are given that, $A+B+C={{270}^{\circ }}$.
On rearranging, the above can be rewritten as $A={{270}^{\circ }}-(B+C)$.
Substituting $A={{270}^{\circ }}-(B+C)$ in the equation, we get,
\[k=1-2\sin A\left( \sin \left( {{270}^{\circ }}-(B+C) \right)+\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
We know that, $\sin ({{270}^{\circ }}-\theta )=-\cos \theta $
Hence, the equation can be rewritten as,
\[k=1-2\sin A\left( -\cos \left( B+C \right)+\cos \left( B-C \right) \right)+4\sin A\sin B\sin C\]
\[k=1-2\sin A\left( \cos \left( B-C \right)-\cos \left( B+C \right) \right)+4\sin A\sin B\sin C\]
We know the trigonometric identity, $\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
Using the above trigonometric identity, the equation can be rewritten as,
\[k=1-2\sin A\left( 2\sin \left( \dfrac{B+C+B-C}{2} \right)\sin \left( \dfrac{B+C-B+C}{2} \right) \right)+4\sin A\sin B\sin C\]
\[k=1-2\sin A\left( 2\sin \left( \dfrac{2B}{2} \right)\sin \left( \dfrac{2C}{2} \right) \right)+4\sin A\sin B\sin C\]
\[k=1-2\sin A.2\sin B\sin C+4\sin A\sin B\sin C\]
\[k=1-4\sin A\sin B\sin C+4\sin A\sin B\sin C\]
\[\therefore k=1\]
But, from equation (1),
$k=\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C$
$\therefore \cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C=1$
Hence, the value of $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C$at $A+B+C={{270}^{\circ }}$ is equal to 1.
So, the correct answer is “Option B”.
Note: Remembering a lot of trigonometric equations may seem tricky and confusing. But, we can easily derive any of the trigonometric equations from the very basic trigonometric equations.
For example,
$\cos \left( {{270}^{\circ }}-\theta \right)=-\sin \theta $. One can easily go wrong with signs of such equations. If we look at the LHS of this equation we can see that it is in the form of the trigonometric identity$\cos (A-B)$. Using the this trigonometric equation $\cos ({{270}^{\circ }}-\theta )$ can be written as $\cos {{270}^{\circ }}\cos \theta +\sin {{270}^{\circ }}\sin \theta $.
Value of $\cos {{270}^{\circ }}=0$ and value of $\sin {{270}^{\circ }}=-1$
Hence, $\cos ({{270}^{\circ }}-\theta )=(-1)\sin \theta =-\sin \theta $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

