
If a+b+c=0, then prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Answer
597.6k+ views
Hint: For solving this first we will see the algebraic identity ${{\left( x+y \right)}^{3}}$After that, we will use the given condition and we will prove the desired result.
Complete step-by-step answer:
Given: It is given that value of $a+b+c=0$ and we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Now, before we proceed we should know the following formula:
$\begin{align}
& {{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)...................\left( 1 \right) \\
\end{align}$
Now, as we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$ . Now, we will simplify the term ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$ . In the first step, we will apply the formula from the equation (1) with $x=a$ and $y=b$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)+{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
\end{align}$
Now, we will use the formula from the equation (1) with $x=a+b$ and $y=c$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
\end{align}$
Now, write $3ab\left( a+b \right)=3ab\left( a+b+c-c \right)$ in the above equation. Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c-c \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c \right)+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=\left( a+b+c \right)\left( {{\left( a+b+c \right)}^{2}}-3\left( a+b \right)c-3ab \right)+3abc \\
\end{align}$
Now, as it is given that $a+b+c=0$. Then,
$\begin{align}
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=0+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc \\
\end{align}$
Now, from the above result, we can say that if $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Thus, we have proved that the left-hand side term is equal to the right-hand side term.
Note: Here students may go like first will see the algebraic identities like formula for ${{\left( x+y \right)}^{3}}$ , ${{\left( x-y \right)}^{2}}$ and ${{\left( x+y+z \right)}^{2}}$ . After that, we will prove an important algebraic identity ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\dfrac{\left( a+b+c \right)}{2}\left( {{\left( a-b \right)}^{2}}+{{\left( b-c \right)}^{2}}+{{\left( c-a \right)}^{2}} \right)$ . And we will use it to prove the desired result. But this is a lengthy solution and it will create confusion.
Complete step-by-step answer:
Given: It is given that value of $a+b+c=0$ and we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Now, before we proceed we should know the following formula:
$\begin{align}
& {{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)...................\left( 1 \right) \\
\end{align}$
Now, as we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$ . Now, we will simplify the term ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$ . In the first step, we will apply the formula from the equation (1) with $x=a$ and $y=b$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)+{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
\end{align}$
Now, we will use the formula from the equation (1) with $x=a+b$ and $y=c$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
\end{align}$
Now, write $3ab\left( a+b \right)=3ab\left( a+b+c-c \right)$ in the above equation. Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c-c \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c \right)+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=\left( a+b+c \right)\left( {{\left( a+b+c \right)}^{2}}-3\left( a+b \right)c-3ab \right)+3abc \\
\end{align}$
Now, as it is given that $a+b+c=0$. Then,
$\begin{align}
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=0+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc \\
\end{align}$
Now, from the above result, we can say that if $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Thus, we have proved that the left-hand side term is equal to the right-hand side term.
Note: Here students may go like first will see the algebraic identities like formula for ${{\left( x+y \right)}^{3}}$ , ${{\left( x-y \right)}^{2}}$ and ${{\left( x+y+z \right)}^{2}}$ . After that, we will prove an important algebraic identity ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\dfrac{\left( a+b+c \right)}{2}\left( {{\left( a-b \right)}^{2}}+{{\left( b-c \right)}^{2}}+{{\left( c-a \right)}^{2}} \right)$ . And we will use it to prove the desired result. But this is a lengthy solution and it will create confusion.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

