
If a+b+c=0, then prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Answer
611.1k+ views
Hint: For solving this first we will see the algebraic identity ${{\left( x+y \right)}^{3}}$After that, we will use the given condition and we will prove the desired result.
Complete step-by-step answer:
Given: It is given that value of $a+b+c=0$ and we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Now, before we proceed we should know the following formula:
$\begin{align}
& {{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)...................\left( 1 \right) \\
\end{align}$
Now, as we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$ . Now, we will simplify the term ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$ . In the first step, we will apply the formula from the equation (1) with $x=a$ and $y=b$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)+{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
\end{align}$
Now, we will use the formula from the equation (1) with $x=a+b$ and $y=c$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
\end{align}$
Now, write $3ab\left( a+b \right)=3ab\left( a+b+c-c \right)$ in the above equation. Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c-c \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c \right)+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=\left( a+b+c \right)\left( {{\left( a+b+c \right)}^{2}}-3\left( a+b \right)c-3ab \right)+3abc \\
\end{align}$
Now, as it is given that $a+b+c=0$. Then,
$\begin{align}
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=0+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc \\
\end{align}$
Now, from the above result, we can say that if $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Thus, we have proved that the left-hand side term is equal to the right-hand side term.
Note: Here students may go like first will see the algebraic identities like formula for ${{\left( x+y \right)}^{3}}$ , ${{\left( x-y \right)}^{2}}$ and ${{\left( x+y+z \right)}^{2}}$ . After that, we will prove an important algebraic identity ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\dfrac{\left( a+b+c \right)}{2}\left( {{\left( a-b \right)}^{2}}+{{\left( b-c \right)}^{2}}+{{\left( c-a \right)}^{2}} \right)$ . And we will use it to prove the desired result. But this is a lengthy solution and it will create confusion.
Complete step-by-step answer:
Given: It is given that value of $a+b+c=0$ and we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Now, before we proceed we should know the following formula:
$\begin{align}
& {{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)...................\left( 1 \right) \\
\end{align}$
Now, as we have to prove that ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$ . Now, we will simplify the term ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$ . In the first step, we will apply the formula from the equation (1) with $x=a$ and $y=b$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)+{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
\end{align}$
Now, we will use the formula from the equation (1) with $x=a+b$ and $y=c$ . Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b \right)}^{3}}+{{c}^{3}}-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
\end{align}$
Now, write $3ab\left( a+b \right)=3ab\left( a+b+c-c \right)$ in the above equation. Then,
$\begin{align}
& {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c-c \right) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3\left( a+b \right)c\left( a+b+c \right)-3ab\left( a+b+c \right)+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=\left( a+b+c \right)\left( {{\left( a+b+c \right)}^{2}}-3\left( a+b \right)c-3ab \right)+3abc \\
\end{align}$
Now, as it is given that $a+b+c=0$. Then,
$\begin{align}
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=0+3abc \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc \\
\end{align}$
Now, from the above result, we can say that if $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$.
Thus, we have proved that the left-hand side term is equal to the right-hand side term.
Note: Here students may go like first will see the algebraic identities like formula for ${{\left( x+y \right)}^{3}}$ , ${{\left( x-y \right)}^{2}}$ and ${{\left( x+y+z \right)}^{2}}$ . After that, we will prove an important algebraic identity ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\dfrac{\left( a+b+c \right)}{2}\left( {{\left( a-b \right)}^{2}}+{{\left( b-c \right)}^{2}}+{{\left( c-a \right)}^{2}} \right)$ . And we will use it to prove the desired result. But this is a lengthy solution and it will create confusion.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

