If $ 999x + 888y = 1332 $
$ 888x + 999y = 555 $ then the value of $ x + y = \_\_\_ $
A.1
B.2
C.999
D.None of these
Answer
281.4k+ views
Hint: To find the value of $ x + y $ , we need to solve the given two linear equations and find the values of x and y first. For solving these equations, we are going to use the elimination method. After we get the values of x and y, we just need to add them and we will get our answer.
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE
