If $ 999x + 888y = 1332 $
$ 888x + 999y = 555 $ then the value of $ x + y = \_\_\_ $
A.1
B.2
C.999
D.None of these
Last updated date: 30th Mar 2023
•
Total views: 207.6k
•
Views today: 2.84k
Answer
207.6k+ views
Hint: To find the value of $ x + y $ , we need to solve the given two linear equations and find the values of x and y first. For solving these equations, we are going to use the elimination method. After we get the values of x and y, we just need to add them and we will get our answer.
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
