
If ${9^7} - {7^9}$ is divisible by 2n, then find the greatest value of n ?
Answer
576.3k+ views
Hint :We will solve this question using binomial expansion.
Binomial expansion – The binomial theorem is the method of expanding an expression which has been raised to any finite power.
Binomial expression – A binomial expression is an algebraic expression which contains two dissimilar terms. Ex. $a + b,{a^3} + {b^3}$ etc.
Binomial theorem :
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{(n - 1)}}{b^1}{ + ^n}{C_2}{a^{(n - 2)}}{b^2} + .....{ + ^n}{C_n}{a^0}{b^n}$
Complete step by step solution :
${9^7} - {7^9}$
We can write it as, ${(8 + 1)^7} + {(8 - 1)^9}$
or, ${(1 + 8)^7} + ( - 1) \times {(1 - 8)^9}$
${(1 + 8)^7} - {(1 - 8)^9}$
By using binomial expansion :
\[{(1 + x)^n}{ = ^n}{C_0}{(1)^n}{x^0}{ + ^n}{C_1}{(1)^{(n - 1)}}{x^1} + .....{ + ^n}{C_n}{(1)^0}{x^n}\]
${(1 + 8)^7} - {(1 - 8)^9}$
$ = \left[ {\left( {^7{C_0}{8^0}{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3} + .....{ + ^7}{C_7}{8^7}} \right)} \right]$$ - \left[ {\left( {^9{C_0}{{( - 8)}^0}{ + ^9}{C_1}{{( - 8)}^1}{ + ^9}{C_2}{{( - 8)}^2}{ + ^9}{C_3}{{( - 8)}^3} + .....{ + ^9}{C_9}{{( - 8)}^9}} \right)} \right]$
$ = 1{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3}{ + ^7}{C_4}{8^4}{ + ^7}{C_5}{8^5}{ + ^7}{C_6}{8^6}{ + ^7}{C_7}{8^7}$
$ - 1{ + ^9}{C_1}{8^1}{ - ^9}{C_2}{8^2}{ + ^9}{C_3}{8^3}{ - ^9}{C_4}{8^4}{ + ^9}{C_5}{8^5}{ - ^9}{C_6}{8^6}{ + ^9}{C_7}{8^7}{ - ^9}{C_8}{8^8}{ + ^9}{C_9}{8^9}$
$ = (7 \times 8) + (9 \times 8) + {8^2}\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$
Term : $\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$ is constant.
So, let this term be k
Then, we have
$ = (7 \times 8) + (9 \times 8) + {8^2}k$
$ = 56 + 72 + {8^2}k$
$ = 132 + {8^2}k$
$ = {8^2}(4 + k)$
So,
${9^7} - {7^9} = {8^2}(4 + k)$
$ = 2 \times 32(4 + k)$
As, we have to prove ${9^7} - {7^9}$ as a multiple of 2.
So, we write ${8^2} = 64$ as $2 \times 32$.
And also, $32(4 + k)$ is another constant.
Therefore, ${9^7} - {7^9} = 2(32c) = 2n$
Where $n = 32$
Note : Make sure you do not apply the formula/concept of permutation here .There is a high chance of students getting confused whether to apply permutation or combination in these kinds of problems.
Binomial expansion – The binomial theorem is the method of expanding an expression which has been raised to any finite power.
Binomial expression – A binomial expression is an algebraic expression which contains two dissimilar terms. Ex. $a + b,{a^3} + {b^3}$ etc.
Binomial theorem :
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{(n - 1)}}{b^1}{ + ^n}{C_2}{a^{(n - 2)}}{b^2} + .....{ + ^n}{C_n}{a^0}{b^n}$
Complete step by step solution :
${9^7} - {7^9}$
We can write it as, ${(8 + 1)^7} + {(8 - 1)^9}$
or, ${(1 + 8)^7} + ( - 1) \times {(1 - 8)^9}$
${(1 + 8)^7} - {(1 - 8)^9}$
By using binomial expansion :
\[{(1 + x)^n}{ = ^n}{C_0}{(1)^n}{x^0}{ + ^n}{C_1}{(1)^{(n - 1)}}{x^1} + .....{ + ^n}{C_n}{(1)^0}{x^n}\]
${(1 + 8)^7} - {(1 - 8)^9}$
$ = \left[ {\left( {^7{C_0}{8^0}{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3} + .....{ + ^7}{C_7}{8^7}} \right)} \right]$$ - \left[ {\left( {^9{C_0}{{( - 8)}^0}{ + ^9}{C_1}{{( - 8)}^1}{ + ^9}{C_2}{{( - 8)}^2}{ + ^9}{C_3}{{( - 8)}^3} + .....{ + ^9}{C_9}{{( - 8)}^9}} \right)} \right]$
$ = 1{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3}{ + ^7}{C_4}{8^4}{ + ^7}{C_5}{8^5}{ + ^7}{C_6}{8^6}{ + ^7}{C_7}{8^7}$
$ - 1{ + ^9}{C_1}{8^1}{ - ^9}{C_2}{8^2}{ + ^9}{C_3}{8^3}{ - ^9}{C_4}{8^4}{ + ^9}{C_5}{8^5}{ - ^9}{C_6}{8^6}{ + ^9}{C_7}{8^7}{ - ^9}{C_8}{8^8}{ + ^9}{C_9}{8^9}$
$ = (7 \times 8) + (9 \times 8) + {8^2}\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$
Term : $\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$ is constant.
So, let this term be k
Then, we have
$ = (7 \times 8) + (9 \times 8) + {8^2}k$
$ = 56 + 72 + {8^2}k$
$ = 132 + {8^2}k$
$ = {8^2}(4 + k)$
So,
${9^7} - {7^9} = {8^2}(4 + k)$
$ = 2 \times 32(4 + k)$
As, we have to prove ${9^7} - {7^9}$ as a multiple of 2.
So, we write ${8^2} = 64$ as $2 \times 32$.
And also, $32(4 + k)$ is another constant.
Therefore, ${9^7} - {7^9} = 2(32c) = 2n$
Where $n = 32$
Note : Make sure you do not apply the formula/concept of permutation here .There is a high chance of students getting confused whether to apply permutation or combination in these kinds of problems.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

