
If ${9^7} - {7^9}$ is divisible by 2n, then find the greatest value of n ?
Answer
590.4k+ views
Hint :We will solve this question using binomial expansion.
Binomial expansion – The binomial theorem is the method of expanding an expression which has been raised to any finite power.
Binomial expression – A binomial expression is an algebraic expression which contains two dissimilar terms. Ex. $a + b,{a^3} + {b^3}$ etc.
Binomial theorem :
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{(n - 1)}}{b^1}{ + ^n}{C_2}{a^{(n - 2)}}{b^2} + .....{ + ^n}{C_n}{a^0}{b^n}$
Complete step by step solution :
${9^7} - {7^9}$
We can write it as, ${(8 + 1)^7} + {(8 - 1)^9}$
or, ${(1 + 8)^7} + ( - 1) \times {(1 - 8)^9}$
${(1 + 8)^7} - {(1 - 8)^9}$
By using binomial expansion :
\[{(1 + x)^n}{ = ^n}{C_0}{(1)^n}{x^0}{ + ^n}{C_1}{(1)^{(n - 1)}}{x^1} + .....{ + ^n}{C_n}{(1)^0}{x^n}\]
${(1 + 8)^7} - {(1 - 8)^9}$
$ = \left[ {\left( {^7{C_0}{8^0}{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3} + .....{ + ^7}{C_7}{8^7}} \right)} \right]$$ - \left[ {\left( {^9{C_0}{{( - 8)}^0}{ + ^9}{C_1}{{( - 8)}^1}{ + ^9}{C_2}{{( - 8)}^2}{ + ^9}{C_3}{{( - 8)}^3} + .....{ + ^9}{C_9}{{( - 8)}^9}} \right)} \right]$
$ = 1{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3}{ + ^7}{C_4}{8^4}{ + ^7}{C_5}{8^5}{ + ^7}{C_6}{8^6}{ + ^7}{C_7}{8^7}$
$ - 1{ + ^9}{C_1}{8^1}{ - ^9}{C_2}{8^2}{ + ^9}{C_3}{8^3}{ - ^9}{C_4}{8^4}{ + ^9}{C_5}{8^5}{ - ^9}{C_6}{8^6}{ + ^9}{C_7}{8^7}{ - ^9}{C_8}{8^8}{ + ^9}{C_9}{8^9}$
$ = (7 \times 8) + (9 \times 8) + {8^2}\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$
Term : $\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$ is constant.
So, let this term be k
Then, we have
$ = (7 \times 8) + (9 \times 8) + {8^2}k$
$ = 56 + 72 + {8^2}k$
$ = 132 + {8^2}k$
$ = {8^2}(4 + k)$
So,
${9^7} - {7^9} = {8^2}(4 + k)$
$ = 2 \times 32(4 + k)$
As, we have to prove ${9^7} - {7^9}$ as a multiple of 2.
So, we write ${8^2} = 64$ as $2 \times 32$.
And also, $32(4 + k)$ is another constant.
Therefore, ${9^7} - {7^9} = 2(32c) = 2n$
Where $n = 32$
Note : Make sure you do not apply the formula/concept of permutation here .There is a high chance of students getting confused whether to apply permutation or combination in these kinds of problems.
Binomial expansion – The binomial theorem is the method of expanding an expression which has been raised to any finite power.
Binomial expression – A binomial expression is an algebraic expression which contains two dissimilar terms. Ex. $a + b,{a^3} + {b^3}$ etc.
Binomial theorem :
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{(n - 1)}}{b^1}{ + ^n}{C_2}{a^{(n - 2)}}{b^2} + .....{ + ^n}{C_n}{a^0}{b^n}$
Complete step by step solution :
${9^7} - {7^9}$
We can write it as, ${(8 + 1)^7} + {(8 - 1)^9}$
or, ${(1 + 8)^7} + ( - 1) \times {(1 - 8)^9}$
${(1 + 8)^7} - {(1 - 8)^9}$
By using binomial expansion :
\[{(1 + x)^n}{ = ^n}{C_0}{(1)^n}{x^0}{ + ^n}{C_1}{(1)^{(n - 1)}}{x^1} + .....{ + ^n}{C_n}{(1)^0}{x^n}\]
${(1 + 8)^7} - {(1 - 8)^9}$
$ = \left[ {\left( {^7{C_0}{8^0}{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3} + .....{ + ^7}{C_7}{8^7}} \right)} \right]$$ - \left[ {\left( {^9{C_0}{{( - 8)}^0}{ + ^9}{C_1}{{( - 8)}^1}{ + ^9}{C_2}{{( - 8)}^2}{ + ^9}{C_3}{{( - 8)}^3} + .....{ + ^9}{C_9}{{( - 8)}^9}} \right)} \right]$
$ = 1{ + ^7}{C_1}{8^1}{ + ^7}{C_2}{8^2}{ + ^7}{C_3}{8^3}{ + ^7}{C_4}{8^4}{ + ^7}{C_5}{8^5}{ + ^7}{C_6}{8^6}{ + ^7}{C_7}{8^7}$
$ - 1{ + ^9}{C_1}{8^1}{ - ^9}{C_2}{8^2}{ + ^9}{C_3}{8^3}{ - ^9}{C_4}{8^4}{ + ^9}{C_5}{8^5}{ - ^9}{C_6}{8^6}{ + ^9}{C_7}{8^7}{ - ^9}{C_8}{8^8}{ + ^9}{C_9}{8^9}$
$ = (7 \times 8) + (9 \times 8) + {8^2}\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$
Term : $\left[ {\left( {^7{C_2}{ + ^7}{C_3}{8^1}{ + ^7}{C_4}{8^2} + .....} \right) - \left( {^9{C_2}{ - ^9}{C_3}{8^1} + .....} \right)} \right]$ is constant.
So, let this term be k
Then, we have
$ = (7 \times 8) + (9 \times 8) + {8^2}k$
$ = 56 + 72 + {8^2}k$
$ = 132 + {8^2}k$
$ = {8^2}(4 + k)$
So,
${9^7} - {7^9} = {8^2}(4 + k)$
$ = 2 \times 32(4 + k)$
As, we have to prove ${9^7} - {7^9}$ as a multiple of 2.
So, we write ${8^2} = 64$ as $2 \times 32$.
And also, $32(4 + k)$ is another constant.
Therefore, ${9^7} - {7^9} = 2(32c) = 2n$
Where $n = 32$
Note : Make sure you do not apply the formula/concept of permutation here .There is a high chance of students getting confused whether to apply permutation or combination in these kinds of problems.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

