Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $8\tan x=15$ then $\sin x-\cos x$ is equal to
a)$\dfrac{8}{17}$
b)$\dfrac{17}{7}$
c)$\dfrac{1}{17}$
d)$\dfrac{7}{17}$

Answer
VerifiedVerified
515.9k+ views

Hint: Here, first find the value of $\tan x$ from the expression $8\tan x=15$. We have to apply the definition, $\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$. Then, construct a right triangle. With the help of the right triangle, find the hypotenuse using Pythagoras theorem. Next, find the values of $\sin x$ and $\cos x$, substitute these values in the expression $\sin x-\cos x$.


Complete step-by-step answer:

Here, we are given that $8\tan x=15$.

Now, we have to find the value of $\sin x-\cos x$.

First consider,

$8\tan x=15$

Now, by cross multiplication we get:

$\tan x=\dfrac{15}{8}$

Now, consider the figure,

seo images

We know that,

$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$

In the figure we have,

Opposite side = AC

Adjacent side = AB

Hypotenuse = BC

$\Delta ABC$ is a right angled triangle. Hence, we can apply the Pythagoras theorem.

Now, by Pythagoras theorem we have,

$ {{(Hypotenuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}} $

$\Rightarrow {{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}} $

Here, we have,

$\tan x=\dfrac{AC}{AB}$

AC = 15

AB = 8

Now, we can write:

$ {{(BC)}^{2}}={{15}^{2}}+{{8}^{2}} $

$ \Rightarrow {{(BC)}^{2}}=225+64 $

$ \Rightarrow {{(BC)}^{2}}=289 $

Next, by taking square root on both the sides we get,

$BC=\sqrt{289} $

$ \Rightarrow BC=17 $

We know that,

  $ \sin x=\dfrac{Opposite\text{ }side}{Hypotenuse} $

 $ \Rightarrow \sin x=\dfrac{AC}{BC} $

$ \Rightarrow \sin x=\dfrac{15}{17} $

Similarly, we have,

\cos x=\dfrac{\text{Adjacent }side}{Hypotenuse} $

$ \Rightarrow \cos x=\dfrac{AB}{BC} $

$ \Rightarrow \cos x=\dfrac{8}{17} $

Now, we have to find $\sin x-\cos x$.

By substituting the values of $\sin x$ and $\cos x$ in the above expression we get,

$\Rightarrow \sin x-\cos x=\dfrac{15}{17}-\dfrac{8}{17}$

Next, by taking LCM we obtain:

$ \Rightarrow \sin x-\cos x=\dfrac{15-8}{17} $

$  \Rightarrow \sin x-\cos x=\dfrac{7}{17} $

Therefore, we can say that when $8\tan x=15$, then $\sin x-\cos x=\dfrac{7}{17}$.

Hence, the correct answer for this question is option (d).


Note: Here, you must have an idea about the trigonometric ratios and the definitions. If you don’t have the basic idea it will be very difficult to continue the solution. To get a better idea, always construct a right triangle and mark the angle given, and it’s corresponding opposite side, adjacent side and hypotenuse.