
If \[{}^8P_r = {}^7\operatorname{P}_ 4 + 4.{}^7\operatorname{P}_3\] ,then \[{\text{r}} = ?\]
A) 6
B) 5
C) 7
D) 4
Answer
577.8k+ views
Hint: We are given with an equation, we will directly apply the formula of permutation \[{}^{\text{n}}P_r \] on three of the terms and solve the equation further to get the value of $r$.
Formula Used:
For permutation \[{}^{\text{n}}P_r \] is given by:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Complete step by step solution:
The given equation is :
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3..........................\left( 1 \right)\].
Now in order to get the answer for $r$ we will apply the following formula for three of the terms in the equation:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^8P_r \] we get:-
\[{}^8P_r = \dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^7\operatorname{P}_4\] we get:-
\[
{}^7\operatorname{P}_4 = \dfrac{{{\text{7!}}}}{{\left( {7 - 4} \right){\text{!}}}} \\
{}^7\operatorname{P}_4 = \dfrac{{7!}}{{3!}} \\
\]
Applying the formula for \[{}^7\operatorname{P}_3\] we get:-
\[
{}^7\operatorname{P}_3 = \dfrac{{{\text{7!}}}}{{\left( {7 - 3} \right){\text{!}}}} \\
{}^7\operatorname{P}_3 = \dfrac{{7!}}{{4!}} \\
\]
Now putting the respective values of \[{}^8P_r \] , \[{}^7\operatorname{P}_4\] and \[{}^7\operatorname{P}_3\] in equation 1 we get:-
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3\]
\[
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4 \times 3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + \left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8}} \times {\text{7!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3 \times 2 \times 1}}} \right) \\
\dfrac{8}{{\left( {8 - {\text{r}}} \right)!}} = \dfrac{1}{3} \\
\]
Now cross multiplying both the sides and solving this equation further we get:-
\[
8 \times 3 = \left( {8 - {\text{r}}} \right)! \\
\left( {8 - {\text{r}}} \right)! = 24 \\
\]
Now since we know,
\[
4! = 4 \times 3 \times 2 \times 1 \\
4! = 24 \\
\]
Therefore,
\[
8 - r = 4 \\
8 - 4 = r \\
r = 4 \\
\]
The value of $r$ is 4. Therefore, option D is correct.
Note:
In this question, we do not have to solve for the proper values of right-hand side terms.
Also, the formula for \[{}^{\text{n}}Pr \] is:
\[{}^{\text{n}}Pr = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
A permutation is used when we have arranged the things in a row i.e, it is used for arrangement.
Formula Used:
For permutation \[{}^{\text{n}}P_r \] is given by:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Complete step by step solution:
The given equation is :
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3..........................\left( 1 \right)\].
Now in order to get the answer for $r$ we will apply the following formula for three of the terms in the equation:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^8P_r \] we get:-
\[{}^8P_r = \dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^7\operatorname{P}_4\] we get:-
\[
{}^7\operatorname{P}_4 = \dfrac{{{\text{7!}}}}{{\left( {7 - 4} \right){\text{!}}}} \\
{}^7\operatorname{P}_4 = \dfrac{{7!}}{{3!}} \\
\]
Applying the formula for \[{}^7\operatorname{P}_3\] we get:-
\[
{}^7\operatorname{P}_3 = \dfrac{{{\text{7!}}}}{{\left( {7 - 3} \right){\text{!}}}} \\
{}^7\operatorname{P}_3 = \dfrac{{7!}}{{4!}} \\
\]
Now putting the respective values of \[{}^8P_r \] , \[{}^7\operatorname{P}_4\] and \[{}^7\operatorname{P}_3\] in equation 1 we get:-
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3\]
\[
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4 \times 3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + \left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8}} \times {\text{7!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3 \times 2 \times 1}}} \right) \\
\dfrac{8}{{\left( {8 - {\text{r}}} \right)!}} = \dfrac{1}{3} \\
\]
Now cross multiplying both the sides and solving this equation further we get:-
\[
8 \times 3 = \left( {8 - {\text{r}}} \right)! \\
\left( {8 - {\text{r}}} \right)! = 24 \\
\]
Now since we know,
\[
4! = 4 \times 3 \times 2 \times 1 \\
4! = 24 \\
\]
Therefore,
\[
8 - r = 4 \\
8 - 4 = r \\
r = 4 \\
\]
The value of $r$ is 4. Therefore, option D is correct.
Note:
In this question, we do not have to solve for the proper values of right-hand side terms.
Also, the formula for \[{}^{\text{n}}Pr \] is:
\[{}^{\text{n}}Pr = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
A permutation is used when we have arranged the things in a row i.e, it is used for arrangement.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

