
If \[{}^8P_r = {}^7\operatorname{P}_ 4 + 4.{}^7\operatorname{P}_3\] ,then \[{\text{r}} = ?\]
A) 6
B) 5
C) 7
D) 4
Answer
513.9k+ views
Hint: We are given with an equation, we will directly apply the formula of permutation \[{}^{\text{n}}P_r \] on three of the terms and solve the equation further to get the value of $r$.
Formula Used:
For permutation \[{}^{\text{n}}P_r \] is given by:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Complete step by step solution:
The given equation is :
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3..........................\left( 1 \right)\].
Now in order to get the answer for $r$ we will apply the following formula for three of the terms in the equation:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^8P_r \] we get:-
\[{}^8P_r = \dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^7\operatorname{P}_4\] we get:-
\[
{}^7\operatorname{P}_4 = \dfrac{{{\text{7!}}}}{{\left( {7 - 4} \right){\text{!}}}} \\
{}^7\operatorname{P}_4 = \dfrac{{7!}}{{3!}} \\
\]
Applying the formula for \[{}^7\operatorname{P}_3\] we get:-
\[
{}^7\operatorname{P}_3 = \dfrac{{{\text{7!}}}}{{\left( {7 - 3} \right){\text{!}}}} \\
{}^7\operatorname{P}_3 = \dfrac{{7!}}{{4!}} \\
\]
Now putting the respective values of \[{}^8P_r \] , \[{}^7\operatorname{P}_4\] and \[{}^7\operatorname{P}_3\] in equation 1 we get:-
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3\]
\[
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4 \times 3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + \left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8}} \times {\text{7!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3 \times 2 \times 1}}} \right) \\
\dfrac{8}{{\left( {8 - {\text{r}}} \right)!}} = \dfrac{1}{3} \\
\]
Now cross multiplying both the sides and solving this equation further we get:-
\[
8 \times 3 = \left( {8 - {\text{r}}} \right)! \\
\left( {8 - {\text{r}}} \right)! = 24 \\
\]
Now since we know,
\[
4! = 4 \times 3 \times 2 \times 1 \\
4! = 24 \\
\]
Therefore,
\[
8 - r = 4 \\
8 - 4 = r \\
r = 4 \\
\]
The value of $r$ is 4. Therefore, option D is correct.
Note:
In this question, we do not have to solve for the proper values of right-hand side terms.
Also, the formula for \[{}^{\text{n}}Pr \] is:
\[{}^{\text{n}}Pr = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
A permutation is used when we have arranged the things in a row i.e, it is used for arrangement.
Formula Used:
For permutation \[{}^{\text{n}}P_r \] is given by:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Complete step by step solution:
The given equation is :
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3..........................\left( 1 \right)\].
Now in order to get the answer for $r$ we will apply the following formula for three of the terms in the equation:
\[{}^{\text{n}}P_r = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^8P_r \] we get:-
\[{}^8P_r = \dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}}\]
Applying this formula for \[{}^7\operatorname{P}_4\] we get:-
\[
{}^7\operatorname{P}_4 = \dfrac{{{\text{7!}}}}{{\left( {7 - 4} \right){\text{!}}}} \\
{}^7\operatorname{P}_4 = \dfrac{{7!}}{{3!}} \\
\]
Applying the formula for \[{}^7\operatorname{P}_3\] we get:-
\[
{}^7\operatorname{P}_3 = \dfrac{{{\text{7!}}}}{{\left( {7 - 3} \right){\text{!}}}} \\
{}^7\operatorname{P}_3 = \dfrac{{7!}}{{4!}} \\
\]
Now putting the respective values of \[{}^8P_r \] , \[{}^7\operatorname{P}_4\] and \[{}^7\operatorname{P}_3\] in equation 1 we get:-
\[{}^8P_r = {}^7\operatorname{P}_4 + 4.{}^7\operatorname{P}_3\]
\[
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + 4\left( {\dfrac{{7!}}{{4 \times 3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = \dfrac{{7!}}{{3!}} + \left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3!}}} \right) \\
\dfrac{{{\text{8}} \times {\text{7!}}}}{{\left( {8 - {\text{r}}} \right){\text{!}}}} = 2\left( {\dfrac{{7!}}{{3 \times 2 \times 1}}} \right) \\
\dfrac{8}{{\left( {8 - {\text{r}}} \right)!}} = \dfrac{1}{3} \\
\]
Now cross multiplying both the sides and solving this equation further we get:-
\[
8 \times 3 = \left( {8 - {\text{r}}} \right)! \\
\left( {8 - {\text{r}}} \right)! = 24 \\
\]
Now since we know,
\[
4! = 4 \times 3 \times 2 \times 1 \\
4! = 24 \\
\]
Therefore,
\[
8 - r = 4 \\
8 - 4 = r \\
r = 4 \\
\]
The value of $r$ is 4. Therefore, option D is correct.
Note:
In this question, we do not have to solve for the proper values of right-hand side terms.
Also, the formula for \[{}^{\text{n}}Pr \] is:
\[{}^{\text{n}}Pr = \dfrac{{{\text{n!}}}}{{\left( {{\text{n}} - {\text{r}}} \right){\text{!}}}}\]
A permutation is used when we have arranged the things in a row i.e, it is used for arrangement.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE
