
If $5\tan \theta -4=0$ then the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ is equal to,
a)$\dfrac{5}{3}$
b)$\dfrac{5}{6}$
c)0
d)$\dfrac{1}{6}$
Answer
609k+ views
Hint: Here, first we have to find the value of $\tan \theta $ from $5\tan \theta -4=0$. Then, divide the numerator and denominator of the function $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ by $\cos \theta $. Next, we have apply the formula $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and also substitute the value of $\tan \theta $ that we obtained from $5\tan \theta -4=0$. Then, do the simplification to obtain the answer.
Complete step-by-step answer:
Here, we are given that $5\tan \theta -4=0$.
Now, we have to find the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
First consider,
$5\tan \theta -4=0$
Now, by taking -4 to the right side -4 becomes 4,
$\Rightarrow 5\tan \theta =4$
Next, by cross multiplication,
$\Rightarrow \tan \theta =\dfrac{4}{5}$
The corresponding figure is as follows:
Next, consider the function, $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
Now, divide the numerator and denominator of the function by $\cos \theta $, we obtain:$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\dfrac{\sin \theta }{\cos \theta }-4\dfrac{\cos \theta }{\cos \theta }}{5\dfrac{\sin \theta }{\cos \theta }+4\dfrac{\cos \theta }{\cos \theta }}$
We know that,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Now, by substituting the above formula, we get:
$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4\dfrac{\cos \theta }{\cos \theta }}{5\tan \theta +4\dfrac{\cos \theta }{\cos \theta }}$
Next, by cancellation,
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4}{5\tan \theta +4}$
We got that $\tan \theta =\dfrac{4}{5}$, hence, by substituting this value we obtain:
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\times \dfrac{4}{5}-4}{5\times \dfrac{4}{5}+4}$
Now, by cancellation,
$\begin{align}
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{4-4}{4+4} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{0}{8} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=0 \\
\end{align}$
Therefore, we can say that the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ when $5\tan \theta -4=0$ is 0.
Hence, the correct answer for this question is option (c).
Note: Here, we can also solve this question by applying the formula for $\tan \theta =\dfrac{Opposite\text{ }side}{Adjacent\text{ }side}$. Then, find the hypotenuse by Pythagoras theorem, where the square of the hypotenuse is the sum of the squares of the opposite side and adjacent side. Next, find the values of $\sin \theta $ and $\cos \theta .$ Substitute the values in the function $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ to obtain the answer.
Complete step-by-step answer:
Here, we are given that $5\tan \theta -4=0$.
Now, we have to find the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
First consider,
$5\tan \theta -4=0$
Now, by taking -4 to the right side -4 becomes 4,
$\Rightarrow 5\tan \theta =4$
Next, by cross multiplication,
$\Rightarrow \tan \theta =\dfrac{4}{5}$
The corresponding figure is as follows:
Next, consider the function, $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
Now, divide the numerator and denominator of the function by $\cos \theta $, we obtain:$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\dfrac{\sin \theta }{\cos \theta }-4\dfrac{\cos \theta }{\cos \theta }}{5\dfrac{\sin \theta }{\cos \theta }+4\dfrac{\cos \theta }{\cos \theta }}$
We know that,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Now, by substituting the above formula, we get:
$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4\dfrac{\cos \theta }{\cos \theta }}{5\tan \theta +4\dfrac{\cos \theta }{\cos \theta }}$
Next, by cancellation,
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4}{5\tan \theta +4}$
We got that $\tan \theta =\dfrac{4}{5}$, hence, by substituting this value we obtain:
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\times \dfrac{4}{5}-4}{5\times \dfrac{4}{5}+4}$
Now, by cancellation,
$\begin{align}
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{4-4}{4+4} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{0}{8} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=0 \\
\end{align}$
Therefore, we can say that the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ when $5\tan \theta -4=0$ is 0.
Hence, the correct answer for this question is option (c).
Note: Here, we can also solve this question by applying the formula for $\tan \theta =\dfrac{Opposite\text{ }side}{Adjacent\text{ }side}$. Then, find the hypotenuse by Pythagoras theorem, where the square of the hypotenuse is the sum of the squares of the opposite side and adjacent side. Next, find the values of $\sin \theta $ and $\cos \theta .$ Substitute the values in the function $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ to obtain the answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

