
If $5\tan \theta -4=0$ then the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ is equal to,
a)$\dfrac{5}{3}$
b)$\dfrac{5}{6}$
c)0
d)$\dfrac{1}{6}$
Answer
595.5k+ views
Hint: Here, first we have to find the value of $\tan \theta $ from $5\tan \theta -4=0$. Then, divide the numerator and denominator of the function $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ by $\cos \theta $. Next, we have apply the formula $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and also substitute the value of $\tan \theta $ that we obtained from $5\tan \theta -4=0$. Then, do the simplification to obtain the answer.
Complete step-by-step answer:
Here, we are given that $5\tan \theta -4=0$.
Now, we have to find the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
First consider,
$5\tan \theta -4=0$
Now, by taking -4 to the right side -4 becomes 4,
$\Rightarrow 5\tan \theta =4$
Next, by cross multiplication,
$\Rightarrow \tan \theta =\dfrac{4}{5}$
The corresponding figure is as follows:
Next, consider the function, $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
Now, divide the numerator and denominator of the function by $\cos \theta $, we obtain:$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\dfrac{\sin \theta }{\cos \theta }-4\dfrac{\cos \theta }{\cos \theta }}{5\dfrac{\sin \theta }{\cos \theta }+4\dfrac{\cos \theta }{\cos \theta }}$
We know that,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Now, by substituting the above formula, we get:
$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4\dfrac{\cos \theta }{\cos \theta }}{5\tan \theta +4\dfrac{\cos \theta }{\cos \theta }}$
Next, by cancellation,
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4}{5\tan \theta +4}$
We got that $\tan \theta =\dfrac{4}{5}$, hence, by substituting this value we obtain:
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\times \dfrac{4}{5}-4}{5\times \dfrac{4}{5}+4}$
Now, by cancellation,
$\begin{align}
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{4-4}{4+4} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{0}{8} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=0 \\
\end{align}$
Therefore, we can say that the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ when $5\tan \theta -4=0$ is 0.
Hence, the correct answer for this question is option (c).
Note: Here, we can also solve this question by applying the formula for $\tan \theta =\dfrac{Opposite\text{ }side}{Adjacent\text{ }side}$. Then, find the hypotenuse by Pythagoras theorem, where the square of the hypotenuse is the sum of the squares of the opposite side and adjacent side. Next, find the values of $\sin \theta $ and $\cos \theta .$ Substitute the values in the function $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ to obtain the answer.
Complete step-by-step answer:
Here, we are given that $5\tan \theta -4=0$.
Now, we have to find the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
First consider,
$5\tan \theta -4=0$
Now, by taking -4 to the right side -4 becomes 4,
$\Rightarrow 5\tan \theta =4$
Next, by cross multiplication,
$\Rightarrow \tan \theta =\dfrac{4}{5}$
The corresponding figure is as follows:
Next, consider the function, $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$.
Now, divide the numerator and denominator of the function by $\cos \theta $, we obtain:$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\dfrac{\sin \theta }{\cos \theta }-4\dfrac{\cos \theta }{\cos \theta }}{5\dfrac{\sin \theta }{\cos \theta }+4\dfrac{\cos \theta }{\cos \theta }}$
We know that,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Now, by substituting the above formula, we get:
$\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4\dfrac{\cos \theta }{\cos \theta }}{5\tan \theta +4\dfrac{\cos \theta }{\cos \theta }}$
Next, by cancellation,
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\tan \theta -4}{5\tan \theta +4}$
We got that $\tan \theta =\dfrac{4}{5}$, hence, by substituting this value we obtain:
$\Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{5\times \dfrac{4}{5}-4}{5\times \dfrac{4}{5}+4}$
Now, by cancellation,
$\begin{align}
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{4-4}{4+4} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=\dfrac{0}{8} \\
& \Rightarrow \dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }=0 \\
\end{align}$
Therefore, we can say that the value of $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ when $5\tan \theta -4=0$ is 0.
Hence, the correct answer for this question is option (c).
Note: Here, we can also solve this question by applying the formula for $\tan \theta =\dfrac{Opposite\text{ }side}{Adjacent\text{ }side}$. Then, find the hypotenuse by Pythagoras theorem, where the square of the hypotenuse is the sum of the squares of the opposite side and adjacent side. Next, find the values of $\sin \theta $ and $\cos \theta .$ Substitute the values in the function $\dfrac{5\sin \theta -4\cos \theta }{5\sin \theta +4\cos \theta }$ to obtain the answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

