
If $4{{x}^{2}}+4{{y}^{2}}+4hxy+16x+32y+10=0$ represents a circle, then h is:
(a) $5$ (b) $0$ (c) $-2$ (d) $-5$
Answer
598.2k+ views
Hint: Think back to the general form of the equation of a circle. It is ${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$. Now see if there’s any term that contains an xy. Proceed from here.
The general equation of any conic section can be written as :
$a{{x}^{2}}+bxy+c{{y}^{2}}+dx+ey+f=0$ .
Comparing equation ${{C}_{1}}:4{{x}^{2}}+4{{y}^{2}}+4hxy+16x+32y+10=0$, we find :
$a=4,b=4h,c=4,d=16,e=32,f=10$.
For this conic to be the equation of a circle, there are certain conditions that this general equation needs to follow. They are :
1. The value of ${{b}^{2}}-4ac<0$. (This makes sure that the conic is an ellipse).
2. Since a circle is just a special case of an ellipse, having both the lengths of the major and minor axes as equal, another condition for the conic to be a circle is : $a=c$ and $b=0$.
Now, we will check for the conditions to be satisfied one by one.
Condition (1) says that ${{b}^{2}}-4ac<0$.
Substituting for $b,a,c$ in the equation ${{b}^{2}}-4ac<0$, we get :
$\begin{align}
& {{(4h)}^{2}}-4\times 4\times 4<0 \\
& \Rightarrow 16{{h}^{2}}-64<0 \\
& \Rightarrow 16{{h}^{2}}<64 \\
& \Rightarrow {{h}^{2}}<4 \\
& \Rightarrow {{h}^{2}}-4<0 \\
& \Rightarrow (h-2)(h+2)<0 \\
& \Rightarrow h\in (-2,2) \\
\end{align}$
Therefore, $h$ can be any value between $-2$ and $2$ according to the first condition.
However, satisfying the first condition just makes the conic represent an ellipse, rather than a circle.
The next condition to be satisfied is condition (2), which states that for the conic to be a circle, $a=c$ and $b=0$.
Substituting for $a,c,b$, we get :
$4=4$ which is always true.
And, $\begin{align}
& b=0 \\
& \Rightarrow 4h=0 \\
& \Rightarrow h=0 \\
\end{align}$
Thus, for the second condition to be satisfied, the only possible value of $h$ can be $0$.
$h=0$ also satisfies the interval we got from the first condition. It does lie between $-2$ and $2$.
Hence, $h$ should be equal to $0$ for the equation $4{{x}^{2}}+4{{y}^{2}}+4hxy+16x+32y+10=0$ to represent a circle.
Correct answer is option (b)
Note: The general equation listed in this sum is an equation that is true for all conic sections. Imposing restrictions on this general form gives us different types of conics, like circles, ellipses, parabolas, etc. Just like we solved for the equation to be a circle right now, it can also be made to represent a parabola or any other conic simply by tweaking the variables.
Another way of approaching this problem would be to simply compare the equation given to the general form of a circle which is : ${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$.
As we can see here, there’s no term containing both $x$ and $y$ in the general equation of a circle. Hence, on comparing we can directly reach the conclusion that the coefficient of $xy=0$ in the equation given. Even then, we would have arrived at the same result.
The general equation of any conic section can be written as :
$a{{x}^{2}}+bxy+c{{y}^{2}}+dx+ey+f=0$ .
Comparing equation ${{C}_{1}}:4{{x}^{2}}+4{{y}^{2}}+4hxy+16x+32y+10=0$, we find :
$a=4,b=4h,c=4,d=16,e=32,f=10$.
For this conic to be the equation of a circle, there are certain conditions that this general equation needs to follow. They are :
1. The value of ${{b}^{2}}-4ac<0$. (This makes sure that the conic is an ellipse).
2. Since a circle is just a special case of an ellipse, having both the lengths of the major and minor axes as equal, another condition for the conic to be a circle is : $a=c$ and $b=0$.
Now, we will check for the conditions to be satisfied one by one.
Condition (1) says that ${{b}^{2}}-4ac<0$.
Substituting for $b,a,c$ in the equation ${{b}^{2}}-4ac<0$, we get :
$\begin{align}
& {{(4h)}^{2}}-4\times 4\times 4<0 \\
& \Rightarrow 16{{h}^{2}}-64<0 \\
& \Rightarrow 16{{h}^{2}}<64 \\
& \Rightarrow {{h}^{2}}<4 \\
& \Rightarrow {{h}^{2}}-4<0 \\
& \Rightarrow (h-2)(h+2)<0 \\
& \Rightarrow h\in (-2,2) \\
\end{align}$
Therefore, $h$ can be any value between $-2$ and $2$ according to the first condition.
However, satisfying the first condition just makes the conic represent an ellipse, rather than a circle.
The next condition to be satisfied is condition (2), which states that for the conic to be a circle, $a=c$ and $b=0$.
Substituting for $a,c,b$, we get :
$4=4$ which is always true.
And, $\begin{align}
& b=0 \\
& \Rightarrow 4h=0 \\
& \Rightarrow h=0 \\
\end{align}$
Thus, for the second condition to be satisfied, the only possible value of $h$ can be $0$.
$h=0$ also satisfies the interval we got from the first condition. It does lie between $-2$ and $2$.
Hence, $h$ should be equal to $0$ for the equation $4{{x}^{2}}+4{{y}^{2}}+4hxy+16x+32y+10=0$ to represent a circle.
Correct answer is option (b)
Note: The general equation listed in this sum is an equation that is true for all conic sections. Imposing restrictions on this general form gives us different types of conics, like circles, ellipses, parabolas, etc. Just like we solved for the equation to be a circle right now, it can also be made to represent a parabola or any other conic simply by tweaking the variables.
Another way of approaching this problem would be to simply compare the equation given to the general form of a circle which is : ${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$.
As we can see here, there’s no term containing both $x$ and $y$ in the general equation of a circle. Hence, on comparing we can directly reach the conclusion that the coefficient of $xy=0$ in the equation given. Even then, we would have arrived at the same result.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

