
If $4\cos \theta = 11\sin \theta $, find value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$.
Answer
497k+ views
Hint: We can substitute the value of $\cos \theta $ from$4\cos \theta = 11\sin \theta $ in terms of $\sin \theta $ in $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$ in order to find the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$ or we can do the vice versa, that is, we can substitute the value of $\sin \theta $ from $4\cos \theta = 11\sin \theta $ in terms of $\cos \theta $.
Complete step-by-step answer:
We are given that $4\cos \theta = 11\sin \theta $ and we are required to find the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$.
Since, $4\cos \theta = 11\sin \theta $, we get
$
\Rightarrow 4\cos \theta = 11\sin \theta \\
\Rightarrow \cos \theta = \dfrac{{11}}{4}\sin \theta \\
$ ..$\left( 1 \right)$
Now we will substitute this value of $\cos \theta $ from equation $1$ in $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$. That is,
$
\Rightarrow \dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} \\
\Rightarrow \dfrac{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) - 7\sin \theta }}{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{\left( {\dfrac{{121}}{4}\sin \theta } \right) - 7\sin \theta }}{{\left( {\dfrac{{121}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{121\sin \theta - 28\sin \theta }}{{121\sin \theta + 28\sin \theta }} \\
$
On simplifying this and taking out $\sin \theta $common from both numerator and denominator, we will get
$ \Rightarrow \dfrac{{\sin \theta \left( {121 - 28} \right)}}{{\sin \theta \left( {121 + 28} \right)}}$
By cancelling, $\sin \theta $ from both numerator and denominator, we will get
$
\Rightarrow \dfrac{{\left( {121 - 28} \right)}}{{\left( {121 + 28} \right)}} \\
\Rightarrow \dfrac{{93}}{{149}} \\
$
Hence, the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{93}}{{149}}$.
Therefore the answer is $\dfrac{{93}}{{149}}$.
Note: We could have also substituted the value of $\sin \theta $ in terms of $\cos \theta $ and the answer would have been the same.
Alternate Method:
$4\cos \theta = 11\sin \theta $
Dividing by $4$ on both sides, we get
$\cos \theta = \dfrac{{11}}{4}\sin \theta $
Taking $\sin \theta $ to left hand side, we get
$\dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{11}}{4}$
Now, multiply by $11$ and divide by $7$on both sides, we will get
$\dfrac{{11\cos }}{{7\sin }} = \dfrac{{11 \times 11}}{{7 \times 4}} = \dfrac{{121}}{{28}}$
Applying $\dfrac{{Numerator - denominator}}{{numerator + denominator}}$on both sides, we will get
$\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{121 - 28}}{{121 + 28}} = \dfrac{{93}}{{149}}$
Hence, the answer is $\dfrac{{93}}{{149}}$.
Complete step-by-step answer:
We are given that $4\cos \theta = 11\sin \theta $ and we are required to find the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$.
Since, $4\cos \theta = 11\sin \theta $, we get
$
\Rightarrow 4\cos \theta = 11\sin \theta \\
\Rightarrow \cos \theta = \dfrac{{11}}{4}\sin \theta \\
$ ..$\left( 1 \right)$
Now we will substitute this value of $\cos \theta $ from equation $1$ in $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$. That is,
$
\Rightarrow \dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} \\
\Rightarrow \dfrac{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) - 7\sin \theta }}{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{\left( {\dfrac{{121}}{4}\sin \theta } \right) - 7\sin \theta }}{{\left( {\dfrac{{121}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{121\sin \theta - 28\sin \theta }}{{121\sin \theta + 28\sin \theta }} \\
$
On simplifying this and taking out $\sin \theta $common from both numerator and denominator, we will get
$ \Rightarrow \dfrac{{\sin \theta \left( {121 - 28} \right)}}{{\sin \theta \left( {121 + 28} \right)}}$
By cancelling, $\sin \theta $ from both numerator and denominator, we will get
$
\Rightarrow \dfrac{{\left( {121 - 28} \right)}}{{\left( {121 + 28} \right)}} \\
\Rightarrow \dfrac{{93}}{{149}} \\
$
Hence, the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{93}}{{149}}$.
Therefore the answer is $\dfrac{{93}}{{149}}$.
Note: We could have also substituted the value of $\sin \theta $ in terms of $\cos \theta $ and the answer would have been the same.
Alternate Method:
$4\cos \theta = 11\sin \theta $
Dividing by $4$ on both sides, we get
$\cos \theta = \dfrac{{11}}{4}\sin \theta $
Taking $\sin \theta $ to left hand side, we get
$\dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{11}}{4}$
Now, multiply by $11$ and divide by $7$on both sides, we will get
$\dfrac{{11\cos }}{{7\sin }} = \dfrac{{11 \times 11}}{{7 \times 4}} = \dfrac{{121}}{{28}}$
Applying $\dfrac{{Numerator - denominator}}{{numerator + denominator}}$on both sides, we will get
$\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{121 - 28}}{{121 + 28}} = \dfrac{{93}}{{149}}$
Hence, the answer is $\dfrac{{93}}{{149}}$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

Correct the following 1m1000cm class 11 physics CBSE

Which river is known as Ganga of the south A Krishna class 11 social science CBSE

