
If $4\cos \theta = 11\sin \theta $, find value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$.
Answer
509.6k+ views
Hint: We can substitute the value of $\cos \theta $ from$4\cos \theta = 11\sin \theta $ in terms of $\sin \theta $ in $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$ in order to find the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$ or we can do the vice versa, that is, we can substitute the value of $\sin \theta $ from $4\cos \theta = 11\sin \theta $ in terms of $\cos \theta $.
Complete step-by-step answer:
We are given that $4\cos \theta = 11\sin \theta $ and we are required to find the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$.
Since, $4\cos \theta = 11\sin \theta $, we get
$
\Rightarrow 4\cos \theta = 11\sin \theta \\
\Rightarrow \cos \theta = \dfrac{{11}}{4}\sin \theta \\
$ ..$\left( 1 \right)$
Now we will substitute this value of $\cos \theta $ from equation $1$ in $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$. That is,
$
\Rightarrow \dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} \\
\Rightarrow \dfrac{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) - 7\sin \theta }}{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{\left( {\dfrac{{121}}{4}\sin \theta } \right) - 7\sin \theta }}{{\left( {\dfrac{{121}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{121\sin \theta - 28\sin \theta }}{{121\sin \theta + 28\sin \theta }} \\
$
On simplifying this and taking out $\sin \theta $common from both numerator and denominator, we will get
$ \Rightarrow \dfrac{{\sin \theta \left( {121 - 28} \right)}}{{\sin \theta \left( {121 + 28} \right)}}$
By cancelling, $\sin \theta $ from both numerator and denominator, we will get
$
\Rightarrow \dfrac{{\left( {121 - 28} \right)}}{{\left( {121 + 28} \right)}} \\
\Rightarrow \dfrac{{93}}{{149}} \\
$
Hence, the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{93}}{{149}}$.
Therefore the answer is $\dfrac{{93}}{{149}}$.
Note: We could have also substituted the value of $\sin \theta $ in terms of $\cos \theta $ and the answer would have been the same.
Alternate Method:
$4\cos \theta = 11\sin \theta $
Dividing by $4$ on both sides, we get
$\cos \theta = \dfrac{{11}}{4}\sin \theta $
Taking $\sin \theta $ to left hand side, we get
$\dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{11}}{4}$
Now, multiply by $11$ and divide by $7$on both sides, we will get
$\dfrac{{11\cos }}{{7\sin }} = \dfrac{{11 \times 11}}{{7 \times 4}} = \dfrac{{121}}{{28}}$
Applying $\dfrac{{Numerator - denominator}}{{numerator + denominator}}$on both sides, we will get
$\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{121 - 28}}{{121 + 28}} = \dfrac{{93}}{{149}}$
Hence, the answer is $\dfrac{{93}}{{149}}$.
Complete step-by-step answer:
We are given that $4\cos \theta = 11\sin \theta $ and we are required to find the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$.
Since, $4\cos \theta = 11\sin \theta $, we get
$
\Rightarrow 4\cos \theta = 11\sin \theta \\
\Rightarrow \cos \theta = \dfrac{{11}}{4}\sin \theta \\
$ ..$\left( 1 \right)$
Now we will substitute this value of $\cos \theta $ from equation $1$ in $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}$. That is,
$
\Rightarrow \dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} \\
\Rightarrow \dfrac{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) - 7\sin \theta }}{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{\left( {\dfrac{{121}}{4}\sin \theta } \right) - 7\sin \theta }}{{\left( {\dfrac{{121}}{4}\sin \theta } \right) + 7\sin \theta }} \\
\Rightarrow \dfrac{{121\sin \theta - 28\sin \theta }}{{121\sin \theta + 28\sin \theta }} \\
$
On simplifying this and taking out $\sin \theta $common from both numerator and denominator, we will get
$ \Rightarrow \dfrac{{\sin \theta \left( {121 - 28} \right)}}{{\sin \theta \left( {121 + 28} \right)}}$
By cancelling, $\sin \theta $ from both numerator and denominator, we will get
$
\Rightarrow \dfrac{{\left( {121 - 28} \right)}}{{\left( {121 + 28} \right)}} \\
\Rightarrow \dfrac{{93}}{{149}} \\
$
Hence, the value of $\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{93}}{{149}}$.
Therefore the answer is $\dfrac{{93}}{{149}}$.
Note: We could have also substituted the value of $\sin \theta $ in terms of $\cos \theta $ and the answer would have been the same.
Alternate Method:
$4\cos \theta = 11\sin \theta $
Dividing by $4$ on both sides, we get
$\cos \theta = \dfrac{{11}}{4}\sin \theta $
Taking $\sin \theta $ to left hand side, we get
$\dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{11}}{4}$
Now, multiply by $11$ and divide by $7$on both sides, we will get
$\dfrac{{11\cos }}{{7\sin }} = \dfrac{{11 \times 11}}{{7 \times 4}} = \dfrac{{121}}{{28}}$
Applying $\dfrac{{Numerator - denominator}}{{numerator + denominator}}$on both sides, we will get
$\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{121 - 28}}{{121 + 28}} = \dfrac{{93}}{{149}}$
Hence, the answer is $\dfrac{{93}}{{149}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

