
If $3{x^2} - 10x - 25 = 0$ is a quadratic equation such that it has two roots $\tan A$and $\tan B$ then find out the value of $3{\sin ^2}\left( {A + B} \right) - 10\sin \left( {A + B} \right).\cos \left( {A + B} \right) - 25{\cos ^2}\left( {A + B} \right)$.
A. $ - 10$
B. $10$
C. $ - 25$
D. $25$
Answer
564k+ views
Hint: We know that if $\alpha $and $\beta $ are the roots of quadratic equation of $P{x^2} + Qx + R = 0$ then the roots are written as $\alpha = \dfrac{{ - Q + \sqrt {{Q^2} - 4PR} }}{{2P}}$ and $\beta = \dfrac{{ - Q - \sqrt {{Q^2} - 4PR} }}{{2P}}$
So, the sum of the two roots are $\alpha + \beta = \dfrac{{ - Q}}{P}$ and the product of the two roots are $\alpha .\beta = \dfrac{R}{P}$
Complete step-by-step solution:
Here the quadratic equation is given $3{x^2} - 10x - 25 = 0$ and the roots are $\tan A$ and $\tan B$ .
So, the sum of the two roots $\tan A + \tan B = \dfrac{{10}}{3}$
Product of the two roots $\tan A.\tan B = \dfrac{{ - 25}}{3}$
Now we know, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}$
Putting the above values we get $ \Rightarrow \dfrac{{\dfrac{{10}}{3}}}{{1 - \left( {\dfrac{{ - 25}}{3}} \right)}} = \dfrac{{\dfrac{{10}}{3}}}{{\dfrac{{28}}{3}}} = \dfrac{5}{{14}}$
Now calculate $
\tan \left( {A + B} \right) = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} = \dfrac{5}{{14}} \\
\Rightarrow \sin \left( {A + B} \right) = \cos \left( {A + B} \right) \times \dfrac{5}{{14}} \\
\Rightarrow {\sin ^2}\left( {A + B} \right) = {\cos ^2}\left( {A + B} \right) \times \dfrac{{25}}{{196}}
$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Put the value of ${\sin ^2}\left( {A + B} \right)$ in this equation,hence we get
$\therefore $ $
{\cos ^2}\left( {A + B} \right) \times \dfrac{{25}}{{196}} + {\cos ^2}\left( {A + B} \right) = 1 \\
\Rightarrow \cos \left( {A + B} \right) = \dfrac{{14}}{{\sqrt {221} }} \\
\Rightarrow \sin \left( {A + B} \right) = \dfrac{5}{{14}} \times \dfrac{{14}}{{\sqrt {221} }} = \dfrac{5}{{\sqrt {221} }}
$
Now put the value of $\sin \left( {A + B} \right)$ and $\cos \left( {A + B} \right)$ in the following equation,
$3{\sin ^2}\left( {A + B} \right) - 10\sin \left( {A + B} \right).\cos \left( {A + B} \right) - 25{\cos ^2}\left( {A + B} \right)$
$
= 3 \times \dfrac{{25}}{{221}} - 10 \times \dfrac{5}{{\sqrt {221} }} \times \dfrac{{14}}{{\sqrt {221} }} - 25 \times \dfrac{{196}}{{221}} \\
= \dfrac{{75 - 700 - 4900}}{{221}} \\
= - 25
$
The value of the required expression is $ - 25$
Hence, option (C) will be the right answer.
Note: Here we used $P{x^2} + Qx + R = 0$ as a quadratic equation because A and B are used in the question.
Not all equations can be easily factored. Thus we need a formula to solve the equation so we use a quadratic formula. There are three conditions –
1. If ${Q^2} - 4PR\rangle 0$ then we will get two real solutions.
2. If ${Q^2} - 4PR = 0$ then we will get a double root.
3. If ${Q^2} - 4PR\langle 0$ then we will get two complex solutions.
So, the sum of the two roots are $\alpha + \beta = \dfrac{{ - Q}}{P}$ and the product of the two roots are $\alpha .\beta = \dfrac{R}{P}$
Complete step-by-step solution:
Here the quadratic equation is given $3{x^2} - 10x - 25 = 0$ and the roots are $\tan A$ and $\tan B$ .
So, the sum of the two roots $\tan A + \tan B = \dfrac{{10}}{3}$
Product of the two roots $\tan A.\tan B = \dfrac{{ - 25}}{3}$
Now we know, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}$
Putting the above values we get $ \Rightarrow \dfrac{{\dfrac{{10}}{3}}}{{1 - \left( {\dfrac{{ - 25}}{3}} \right)}} = \dfrac{{\dfrac{{10}}{3}}}{{\dfrac{{28}}{3}}} = \dfrac{5}{{14}}$
Now calculate $
\tan \left( {A + B} \right) = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} = \dfrac{5}{{14}} \\
\Rightarrow \sin \left( {A + B} \right) = \cos \left( {A + B} \right) \times \dfrac{5}{{14}} \\
\Rightarrow {\sin ^2}\left( {A + B} \right) = {\cos ^2}\left( {A + B} \right) \times \dfrac{{25}}{{196}}
$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Put the value of ${\sin ^2}\left( {A + B} \right)$ in this equation,hence we get
$\therefore $ $
{\cos ^2}\left( {A + B} \right) \times \dfrac{{25}}{{196}} + {\cos ^2}\left( {A + B} \right) = 1 \\
\Rightarrow \cos \left( {A + B} \right) = \dfrac{{14}}{{\sqrt {221} }} \\
\Rightarrow \sin \left( {A + B} \right) = \dfrac{5}{{14}} \times \dfrac{{14}}{{\sqrt {221} }} = \dfrac{5}{{\sqrt {221} }}
$
Now put the value of $\sin \left( {A + B} \right)$ and $\cos \left( {A + B} \right)$ in the following equation,
$3{\sin ^2}\left( {A + B} \right) - 10\sin \left( {A + B} \right).\cos \left( {A + B} \right) - 25{\cos ^2}\left( {A + B} \right)$
$
= 3 \times \dfrac{{25}}{{221}} - 10 \times \dfrac{5}{{\sqrt {221} }} \times \dfrac{{14}}{{\sqrt {221} }} - 25 \times \dfrac{{196}}{{221}} \\
= \dfrac{{75 - 700 - 4900}}{{221}} \\
= - 25
$
The value of the required expression is $ - 25$
Hence, option (C) will be the right answer.
Note: Here we used $P{x^2} + Qx + R = 0$ as a quadratic equation because A and B are used in the question.
Not all equations can be easily factored. Thus we need a formula to solve the equation so we use a quadratic formula. There are three conditions –
1. If ${Q^2} - 4PR\rangle 0$ then we will get two real solutions.
2. If ${Q^2} - 4PR = 0$ then we will get a double root.
3. If ${Q^2} - 4PR\langle 0$ then we will get two complex solutions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

