
If \[{3^x} = z\], ${z^y} = 5$, ${5^z} = 3$ then $xyz = $?
(A) 0
(B) 5
(C) 3
(D) 1
Answer
577.8k+ views
Hint:The law of exponents states that when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. For any real numbers $a$, $x$ and $y$, where \[a > 0\], ${x} = {y}$ if and only if ${a^x} = {a^y}$.Using this concept we try to solve the question.
Complete step-by-step answer:
Given equations are,
\[{3^x} = z ….…. (1)\]
${z^y} = 5 ….…. .(2)$
${5^z} = 3 ...…. (3)$
Substitute the value of $z$ from equation (1) to equation (2),
${\left( {{3^x}} \right)^y} = 5$
$ \Rightarrow {3^{xy}} = 5 …..…. (4)$
Now, substitute the value of $5$ from equation (4) to equation (3),
${\left( {{3^{xy}}} \right)^z} = 3$
$ \Rightarrow {3^{xyz}} = {3^1}$ …. (5)
As we know that when an exponential equation has the same base on each side, the exponents must be equal.
Since in equation (5), the base on both sides is the same i.e., 3. Therefore, the exponents also are equal.
$ \Rightarrow xyz = 1$
So, the correct answer is “Option D”.
Note:We can also solve this question by an alternative method.
In this method, we multiplied all the given equations (1), (2) and (3);
${3^x} \cdot {z^y} \cdot {5^z} = z \times 5 \times 3$
$ \Rightarrow $$\dfrac{{{3^x} \cdot {z^y} \cdot {5^z}}}{{z \times 5 \times 3}} = 1$
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = 1$
As we know that ${a^0} = 1$. By using this concept, the above equation can be written as-
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = {3^0} \cdot {z^0} \cdot {5^0}$
The law of exponents states that when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. For any real numbers $a$, $x$ and $y$, where \[a > 0\], ${x} = {y}$ if and only if ${a^x} = {a^y}$.
So comparing the power of both sides with same base,
$x - 1 = 0 \Rightarrow x = 1$
$y - 1 = 0 \Rightarrow y = 1$
$z - 1 = 0 \Rightarrow z = 1$
Now, $xyz = 1 \times 1 \times 1 = 1$
Complete step-by-step answer:
Given equations are,
\[{3^x} = z ….…. (1)\]
${z^y} = 5 ….…. .(2)$
${5^z} = 3 ...…. (3)$
Substitute the value of $z$ from equation (1) to equation (2),
${\left( {{3^x}} \right)^y} = 5$
$ \Rightarrow {3^{xy}} = 5 …..…. (4)$
Now, substitute the value of $5$ from equation (4) to equation (3),
${\left( {{3^{xy}}} \right)^z} = 3$
$ \Rightarrow {3^{xyz}} = {3^1}$ …. (5)
As we know that when an exponential equation has the same base on each side, the exponents must be equal.
Since in equation (5), the base on both sides is the same i.e., 3. Therefore, the exponents also are equal.
$ \Rightarrow xyz = 1$
So, the correct answer is “Option D”.
Note:We can also solve this question by an alternative method.
In this method, we multiplied all the given equations (1), (2) and (3);
${3^x} \cdot {z^y} \cdot {5^z} = z \times 5 \times 3$
$ \Rightarrow $$\dfrac{{{3^x} \cdot {z^y} \cdot {5^z}}}{{z \times 5 \times 3}} = 1$
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = 1$
As we know that ${a^0} = 1$. By using this concept, the above equation can be written as-
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = {3^0} \cdot {z^0} \cdot {5^0}$
The law of exponents states that when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. For any real numbers $a$, $x$ and $y$, where \[a > 0\], ${x} = {y}$ if and only if ${a^x} = {a^y}$.
So comparing the power of both sides with same base,
$x - 1 = 0 \Rightarrow x = 1$
$y - 1 = 0 \Rightarrow y = 1$
$z - 1 = 0 \Rightarrow z = 1$
Now, $xyz = 1 \times 1 \times 1 = 1$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

