
If \[{3^x} = z\], ${z^y} = 5$, ${5^z} = 3$ then $xyz = $?
(A) 0
(B) 5
(C) 3
(D) 1
Answer
514.2k+ views
Hint:The law of exponents states that when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. For any real numbers $a$, $x$ and $y$, where \[a > 0\], ${x} = {y}$ if and only if ${a^x} = {a^y}$.Using this concept we try to solve the question.
Complete step-by-step answer:
Given equations are,
\[{3^x} = z ….…. (1)\]
${z^y} = 5 ….…. .(2)$
${5^z} = 3 ...…. (3)$
Substitute the value of $z$ from equation (1) to equation (2),
${\left( {{3^x}} \right)^y} = 5$
$ \Rightarrow {3^{xy}} = 5 …..…. (4)$
Now, substitute the value of $5$ from equation (4) to equation (3),
${\left( {{3^{xy}}} \right)^z} = 3$
$ \Rightarrow {3^{xyz}} = {3^1}$ …. (5)
As we know that when an exponential equation has the same base on each side, the exponents must be equal.
Since in equation (5), the base on both sides is the same i.e., 3. Therefore, the exponents also are equal.
$ \Rightarrow xyz = 1$
So, the correct answer is “Option D”.
Note:We can also solve this question by an alternative method.
In this method, we multiplied all the given equations (1), (2) and (3);
${3^x} \cdot {z^y} \cdot {5^z} = z \times 5 \times 3$
$ \Rightarrow $$\dfrac{{{3^x} \cdot {z^y} \cdot {5^z}}}{{z \times 5 \times 3}} = 1$
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = 1$
As we know that ${a^0} = 1$. By using this concept, the above equation can be written as-
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = {3^0} \cdot {z^0} \cdot {5^0}$
The law of exponents states that when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. For any real numbers $a$, $x$ and $y$, where \[a > 0\], ${x} = {y}$ if and only if ${a^x} = {a^y}$.
So comparing the power of both sides with same base,
$x - 1 = 0 \Rightarrow x = 1$
$y - 1 = 0 \Rightarrow y = 1$
$z - 1 = 0 \Rightarrow z = 1$
Now, $xyz = 1 \times 1 \times 1 = 1$
Complete step-by-step answer:
Given equations are,
\[{3^x} = z ….…. (1)\]
${z^y} = 5 ….…. .(2)$
${5^z} = 3 ...…. (3)$
Substitute the value of $z$ from equation (1) to equation (2),
${\left( {{3^x}} \right)^y} = 5$
$ \Rightarrow {3^{xy}} = 5 …..…. (4)$
Now, substitute the value of $5$ from equation (4) to equation (3),
${\left( {{3^{xy}}} \right)^z} = 3$
$ \Rightarrow {3^{xyz}} = {3^1}$ …. (5)
As we know that when an exponential equation has the same base on each side, the exponents must be equal.
Since in equation (5), the base on both sides is the same i.e., 3. Therefore, the exponents also are equal.
$ \Rightarrow xyz = 1$
So, the correct answer is “Option D”.
Note:We can also solve this question by an alternative method.
In this method, we multiplied all the given equations (1), (2) and (3);
${3^x} \cdot {z^y} \cdot {5^z} = z \times 5 \times 3$
$ \Rightarrow $$\dfrac{{{3^x} \cdot {z^y} \cdot {5^z}}}{{z \times 5 \times 3}} = 1$
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = 1$
As we know that ${a^0} = 1$. By using this concept, the above equation can be written as-
$ \Rightarrow $${3^{x - 1}} \cdot {z^{y - 1}} \cdot {5^{z - 1}} = {3^0} \cdot {z^0} \cdot {5^0}$
The law of exponents states that when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. For any real numbers $a$, $x$ and $y$, where \[a > 0\], ${x} = {y}$ if and only if ${a^x} = {a^y}$.
So comparing the power of both sides with same base,
$x - 1 = 0 \Rightarrow x = 1$
$y - 1 = 0 \Rightarrow y = 1$
$z - 1 = 0 \Rightarrow z = 1$
Now, $xyz = 1 \times 1 \times 1 = 1$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
